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So, let us now move on. Those are the standard results that we have. 
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One was the linear combination of Gaussian, other was a linear combination of squared 

Gaussian and the other third one was the linear combination of chi square distributed 

random variables. So, all of them are assumed to be independent. 
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The thing that you should have seen straight away is in all these 3. We are only looking 



at linear operations, and therefore, we were able to derive the distribution results very 

easily. If I had performed some non-linear and of operation on these variables, then you 

could have been difficult to provide an answer, alright. So, let us look at the distribution 

of mean, a part of which sample mean; a part of which we have already discussed. So, 

some parts we will just breeze through and then we will conclude this lecture. 
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 Suppose, so now assume that we have decided to use sample mean as a test statistic for 

all our hypothesis test. In fact, that is going to be the case in this course. Then, we have 

already derived the results that I am showing you here that the standard error of sample 

mean under the independence assumption is sigma over root n. Again what, left hand 

side is sigma X bar and on the right hand side you have sigma X. One is that of the 

estimate, the left hand side of the statistic. And, on the right hand side we have sigma for 

the process. So, be careful with that.  

Of course, now what is the theoretical sampling distribution of X bar? We have answered 

part of that question. For the case of X bar, sorry, X falling out of a Gaussian distribution. 

So the first equation here, the first result is, sorry, has been derived already on the board 

for us.  



What if X falls out of an exponential distribution? Then X bar does not follow the 

Gaussian distribution, in fact it follows a gamma distribution. That is the interesting part 

of it. So you can see that for small, that is, now we are looking at finite n. When we go to 

large n, again all distributions tend to Gaussian. That is the beauty of Gaussian. 

Everything, it pulls all these distributions towards itself; whether it is a binomial or 

whether it is a chi square or whether it is a (Refer Time: 02:28) or a gamma, whatever it 

is, all distributions tend to take the shape of a Gaussian as n becomes large. So, these 

results are for finite n, alright. So now, remember this is the case when I know the 

distribution of X. Remember that. For unknown distributions, is something we will 

discuss it shortly. 
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This is just an illustration of the result for the case of Gaussian distributed observations. 

This is something that we have gone through already. On the left-hand side, in the plot I 

am showing you the estimates that I have obtained from 1000 replicates. And, they all 

seem to fall within this band. This band is the 99 percent probability band.  

And, on the right-hand side you see a histogram. And, I would fit a Gaussian distribution 

there to show that yes, X bar follows a Gaussian distribution. You can now go and check 

for finite n and small n. Do not take 1000 samples. If you take 1000 samples, again 



whereas the observations fall out of a Gaussian or non-Gaussian distribution, you will 

always see a Gaussian distribution. In order to check or verify the second result here, 

generate observations from an exponential distribution; may be take 30 samples, 30 

observations or 20 observations. And, go repeat that exercise with the use of replicate, 

plot a histogram and you will see that follows a gamma distribution one.  

Observation that you may see here is that the mean here is a mu, alright; whereas, a 

gamma distribution is not given by the mean and variance. So, you have to be really 

careful. The numbers here are not the mean and variance of the gamma distribution. The 

gamma distribution is characterized by some other parameters. Eventually expectation of 

X bar, regardless of the distribution will still be the mean. That is something that you 

should remember. Do not get confused between the notations here for different 

distributions. 
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What about now unknown underlying distribution? Now, we have already said regardless 

of the underlying distribution, mean is mean. And variance, mean of X bar is a mean of 

X and variance of X bar is variance of the process by n. There we do not need to know 

the distribution. This is for the infinite populations and independence assumption as 

usual.  



Suppose, the population size is infinite; we have been assuming that the population size 

is infinite. That means there are so many possibilities, infinite number of possibilities. If 

the population size is finite, there are many situations such as that and then the mean 

expression does not change. But, the variance expression takes a different route.  

And, in fact you can perhaps see that as n goes to infinity, that is, the size of the 

population goes to infinity, you will recover the expression on the left. So, normally we 

will deal with infinite populations. But, you have to be watchful. If your application 

belongs to the right-hand side, then you should use this variance expression.  

Now, what about the distribution of X bar when X falls out of an unknown distribution? 

Typically, that is a scenario. You may not know. But sometimes, yes, you may know up 

front. For example, if you have collected large data and you want to know what 

distribution the data is coming out of, you can actually take a histogram. Plot a histogram 

of the data; get a feel of the distribution. Let us say that I do not know the distribution. 

What happens to the distribution of X bar? 
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Here is where the central limit theorem kicks in, which says that when you add up; we 

have already seen this before. When you add up n observations n coming out of a 



random sample then and each of them are identically distributed; that means, every 

observation falls out of the same distribution with the same mean and same variance. 

Then, the standardized X bar will follow a Gaussian distribution; standard Gaussian 

distribution. Now, there are some relaxations to this central limit. This is the original 

version of central limit theorem; where X 1 to X n is set to be falling out of an i.i.d. 

independent and identically distributed family. But, what if they are not coming out of an 

identical distribution? 

What if X’s are not independent? Still, the result mildly holds the Gaussian distribution. 

Still, it is valid. The only difference is the variance expressions would be different and 

perhaps the mean expression would be a bit different. But, in terms of distribution it still 

becomes X bar still tends to have a Gaussian distribution. And, a CLT is for X bar and 

not for X. Just as a reminder. And, what you have here is, therefore the same results 

straight away applied to the sample mean. So, CLT actually can be applied straight away 

to the sample mean, so that the standardized sample mean follows a Gaussian 

distribution. 
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Now, finally, what about unknown distribution with unknown variance; until now, all 

along we have been assuming that the variance is known, alright. But, what if I do not 



know the variance? Which is also the more practical situation; we started from an ideal 

case, where we said I may know the distribution of X and I may know the variance of X. 

What is the problem if I do not know the variance? Then, this X bar minus mu by sigma 

root n is no longer a statistic because for Z to be called a ‘statistic’, we should know both 

mu and sigma, alright. So, here we do not know sigma. And therefore, we have a 

problem. Of course we do not know mean, but we know that ultimately X bar is an 

unbiased estimator of the mean. So, that is not so much of an issue because we can say 

instead of saying X bar minus mu, we can say X bar by sigma or root n as a Gaussian 

distribution and so on.  

But, the fact is now that sigma is not known, how do we do it? The solution there is to 

replace the variance, the true variance with the sample variance. We have not yet looked 

at the expression for sample variance. So, this is just jumping (Refer Time: 09:07). 

Assume that we know the expressions for sample variance. It is a very common 

expression that we all know. We see on our; we see a button with sigma square n minus 

one or sigma n minus 1 on our calculators. The sigma n minus one is the square root of 

the sample variance, sample standard deviation.  

I can replace the theoretical variance with this standard one. And, there are two different 

scenarios here that we can look at; large n. What is large typically depends? Statistically, 

n greater than 5; for example, 30, 40, 50 is considered large. In certain other cases, it may 

be 100 and so on. But, generally speaking for large n, when you replace the true variance 

with the sample variance, then all the results that we have discussed earlier hold good; 

that means X bar still follows the Gaussian distribution; for small n and additionally. you 

assume now not unknown distribution, but we assume that if X bar X falls out of a 

Gaussian population, then what is the story? In the large sample case, we do not really 

worry about the distribution of the observations. But in this small sample case, we again 

restrict ourselves to a known distribution. And, the result is if X falls out of a Gaussian 

population, then the statistic X bar minus mu by S over root n. S is our sample standard 

deviation; that follows what is known as a student’s t-distribution with n minus 1 degrees 

of freedom.  

Again, here we have degrees of freedom. Here, what is a student’s t-distribution? It also 



looks like a Gaussian distribution, but it is different from it. In the sense that it has the 

certain, it has an additional parameter which is called degrees of freedom. Again, that is 

got to do with the sources of variability. t is a random variable; why is it a random 

variable? Because X bar is a random variable, in addition the sample variance also is a 

random variable because it is an estimate after all. How is a sample variance calculated? 

Well, S is a sample standard deviation, but it is coming out of sample variance. So, it is a 

random variable. How is a sample variance computed? We know it is computed as 1 over 

n minus 1 sigma X i minus X bar to the whole square. So, there you have n terms that we 

are using in computing the sample variance.  

We shall learn in the later lecture that sample variance has a chi square distribution with 

n minus 1 degree of freedom. Why this n minus one degrees of freedom, when I have n 

observations, n sources of variability because one degree of freedom has already been 

taken up in the computation of X bar. So, already that has been taken up. So truly 

speaking, there are n minus one sources of variability. I am just giving a qualitative 

explanation. We will again revisit that point when we discuss sample variance.  

So, the bottom line here is when the variance is unknown, I replace it with sample 

variance. And then, if the sample size is small and X falls out of a Gaussian population, 

the resulting random variable follows a t distribution. The name “student” is only a pen 

name. It is not the name of the person who invented it. The person chose to use the name 

“student”, and thereafter, it came to be known about as student’s t-distribution.  

Now the student’s t-distribution, it turns out when the degrees of freedom becomes large, 

greater than thirty, it actually becomes independent of the degrees of freedom and tends 

to have a Gaussian distribution as well. That is why only for the small sample case we 

will have to worry about this difference between known variance and the difference 

between a Gaussian case and non-Gaussian and so on.  

Now, what about in general that is for the small sample case? What about non-Gaussian? 

Well, approximately you can use a t distribution. In that case, it is only an approximate 

result. So, we have to be a bit practical there. Or of course, you can use a more powerful 

Monte Carlo simulation or bootstrapping techniques to determine a more accurate 



distribution. For our purposes, we will assume that X falls out of a Gaussian population, 

and whenever the sample size is small and then you say student’s t-distribution. So, that 

brings us to the closure of this lecture where we learnt some very critical aspects, core 

aspects of hypothesis testing. We learnt that statistics plays central role and hypothesis 

testing. The sampling distribution has a critical role to play in the test of hypothesis. We 

will see later on how the sampling distribution plays a vital role in construction of 

confidence regions.  

Remember, the problem of estimation is not, does not end with arriving at the estimate. 

Rather, it actually begins there. One should not stop at during the estimate. This is what 

typically we see around when, you know, when many of the students present the 

estimate. We have to go one step further and provide a confidence region for where the 

truth is; that is the purpose of estimation, to say something about the truth. And, giving 

an estimate is not alone sufficient. And, that is where we will discuss the notion of 

confidence region and how confidence region construction is an alternative to hypothesis 

testing is what we will see. There once again f of theta hat plays a central role in this 

construction of confidence regions. And then, of course we went through some standard 

results.  

In this lecture, we have specifically learnt the sampling distribution of sample mean 

under different conditions. In the next lecture, we will look at distributions of sample 

variance. In fact, difference in sample means and then sample variances, ratios of sample 

variances and then sample proportion and differences in sample proportion. Now, you 

can all relate that to the examples that we talked about in the motivation lecture, OK. So, 

this has been perhaps a long lecture for you, but it is worth it. Please, go through it once 

again because the concepts are very important. In case you are not following a certain 

thing, go through it. Wherever we have used r please work out by yourself, pause the 

video lecture, work out the r lecture examples by yourself. And, as usual if you have any 

questions you always have the forum at your (Refer Time: 16:09) to raise of questions 

and we will be happy to answer.  

See you in the next lecture. 


