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So, welcome back after a short break. In the example that we just went through, we 

learnt several things. And, let us list a few of them. The first thing is that the sample 

mean has a Gaussian distribution. Of course, we have not yet proved it theoretically. But, 

we have seen it through simulations, and at least for the case of Gaussian distribution.  

And, we have also seen that in the case of the samples falling out of the, the observations 

falling out of a uniform distribution. The sample mean still follows a Gaussian 

distribution. But, there is a small catch there. If we look at the case of fewer 

observations, that is, when n is small and the samples followed of a non-Gaussian 

distribution there is no need or necessity. In fact, the sample mean does not follow 

Gaussian distribution. It is only when the n becomes large. When the sample size 

becomes large, the sample mean tends to follow the Gaussian distribution, regardless of 



the distribution of the observations. And this is; what is the essence of central limit 

theorem as we will shortly review; that is the first point.  

The more important point that we have learnt is the role of the distribution of the statistic 

in hypothesis testing. Of course, you have shown this only in the case of, not shown; I 

would say we have discussed this in the case of mean testing. But, that is true of the 

general hypothesis test of the form theta equals theta naught and that f of theta hat plays 

a critical role in hypothesis testing.  

The way we used f of theta hat is to look at or to compute the probability of the test 

statistic taking on a certain value or within the interval of the observed value. And, if that 

probability turns out to be quite lower than what we can accept, which we call as a 

critical value; then we reject the null hypothesis. So, as you can see f of theta hat plays a 

critical role.  
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And, the other thing that we have seen is that this going to be certain error in any 

hypothesis test because it is based on probability and the critical value that I said. That is 

where we end up with type one and type two errors. A formal definition of which will be 

(Refer Time: 02:51) later on.  



So, now let us continue with our discussion on sampling distributions where we will now 

try to derive theoretically the distributions of the statistics of interests namely the sample 

mean, sample variance and so on.  

In this lecture, we will look at sample mean. In the next lecture, we will look at 

difference in sample means, sample variance, ratios of sample variance and sample 

proportion ratios of or differences in sample proportion. And eventually when we talk of 

correlation, we will also look at distributions of sample correlation. 
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In order to derive the theoretical results, some standard results that are available in the 

distribution theory can be invoked. And, the first result is right in front of us; which says 

that the linear combination of Gaussian random variables or a weighted sum of Gaussian 

random variables is also Gaussian distribution. This is the result that we have seen 

earlier. It is not something new.  

But, let us use this opportunity to revisit that Y is a new random variable that has taken 

birth through a linear combination of n Gaussian random variables. And, each random 

variable in the sum follows a Gaussian distribution and has a same mean and a same 

variance, so that makes it easy to derive the mean or you can actually assume that each 



random variable falls has a separate mean and separate variance. Even then, you can 

derive as I have shown here. The result that is shown here is for the general case. It is 

very easy to show this result. All you have to do is apply the expectation operator, that is, 

compute the expectation of Y and use the linearity property of the expectation operator 

and show that the mean of the resulting random variable Y also adds up in the same 

proportion as Y itself.  

And the other assumption, of course that we are making here is that X i’s are 

uncorrelated or independent. And, we can recall the definition of uncorrelatedness or 

independence. Basically that means, there is no covariance between any pair of random 

variables in the summation. In which case, the variance of Y simply turns out to be the 

weighting square in your sum, times the sigma square i. So, let me just quickly elaborate 

that a bit more for you. 
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So in general, when in general when I have a pair of, when I am adding up let us say 2 

random variables X 1 plus X 2 to produce, let us say, alpha 1 X 1 plus alpha 2 X 2 to 

produce a new random variable. Of course, as I said it is straight forward to see that mu 

Y is alpha 1 mu 1 plus alpha 2 mu 2. This is regardless of the distribution of X 1 and X 2 



and regardless of whether X 1 and X 2 are uncorrelated, correlated, independent, and 

dependent. It is got nothing to do with none of those requirements. 

When it comes to the variance of Y, which is expectation of Y minus mu Y to the whole 

square. And, once you plug in the values of, sorry, the expression for Y and expression 

for mu y, you would end up with this expression; which is alpha one square sigma square 

one plus alpha 2 square sigma, 2 square plus a third term, which is 2 times covariance of 

X 1 X 2. And, this is a generic expression. Once again, this is got nothing to do with X 1 

and X 2 falling out of a Gaussian distribution and so on.  

So, in deriving this results distribution has no role to play. Now, if you assume that X 1 

and X 2 belong to a random sample that is they are independent; then independence 

means uncorrelatedness. And therefore, you can strike this off and you end up with this 

expression. And, now you can extend this result to the general case of n observations.  

Now coming to the distribution of Y is what the other result states. That is where we are 

invoking the fact that each X i falls out of a Gaussian distribution with mu mean, mu i 

and variance sigma square. And, the result says when I add up 2 such Gaussian random 

variables then the resulting variable Y also has a Gaussian distribution with this mean 

and this variance. So, something that we can straight away use for the sample mean as an 

illustration.  

Suppose in place of Y, I have x bar and in place alpha 1 alpha 2 I have 1 over n, then we 

have x bar is 1 over n sigma i equals 1 to n X i. X i, of course it is a random in. At this 

stage, we are using the notation that X i is random variable. In practice, what you do is 

you replace a random variable with the value that you have in the sample because we are 

now interested in the distribution of x bar. We are using the random variable notation. 

So, now we can straight away use this result; if X i each observation is falling out of a 

Gaussian distribution. And, that is what we have essentially seen in the illustration in our 

x bar follows a Gaussian distribution. Of course, in the example that we illustrated every 

observation fell out of the same Gaussian distribution mean and sigma square. 



Specifically, we simulated for the case of mean two and variance one. But, this need not 

be true in general.  

And, now you can figure out what is the mean of x bar using this result here. Expectation 

of x bar, I will also use this upper case notation, so that we are looking at random 

variables. Expectation of X bar would be one over n times sigma expectation of X i. 

Since each X i falls out of the same distribution, I have 1 over n sigma mu i equals i 

running from 1 to n. And, therefore expectation of X bar; that means, the average of X 

bar is the same as the average of X or X i you can say. Now, this is very important 

because this is a test for bias of the estimator. We say that any estimator is unbiased, if its 

average is the same as a true mean. Here, the estimator is sample mean. 

(Refer Slide Time: 10:47). 

 

And bias is; in general, for any parameter theta bias is defined as an expectation of theta 

hat minus theta naught. Theta is mean for us in this exercise and theta naught is mu. And 

therefore, we get this.  

So, to give you an idea; to give you a pictorial idea of this, so let us say the mu is here. 

The truth is fixed. And, our estimates are all over the place, not all over the place, but to 

the left and right of mu. Each cross, here marked is an estimate from a data record. We 



talked about this in the example and we also simulate it when we use the command 

replicate. In each of iteration of the replicate, it is actually generating a data record. From 

each data record, you have an estimate which is denoted by the cross arrow mark here. 

And, what this result says is that the average of all such estimates coincides with the 

truth. If it does not, then you have a biased estimator. 

As a simple example, suppose in place of one over n I had used this estimator X bar, let 

us call this X bar tilda as a different estimator. With one over, let say, n minus 1. Then, 

here clearly expectation of X bar is n over n minus one mu; which means average of all 

such readings would fall to the right of mu; if you think of the origin being here. 

Essentially, right or left we are not so much worried about it. It does not coincide with 

mu. And, in this case, sorry, it is not X bar, but X bar tilda. In this case, X bar tilda is a 

biased estimator; which means there is a systematic difference between X bar tilda and 

mu.  

Again, you should keep telling this to yourself that every estimate, that is, estimate 

computed from every data record will always been error that there is no denial. It is a 

fact to acknowledge. What is important is to see is the average of all such errors will be 

0, so that expectation of X bar coincides with mu. So, we have now computed the mean 

of X bar. Correct. And that turns out to be mu. Now, we can also use this result to derive 

the variance of X bar, alright. 

So, let us now derive the expression for the variance. Now, I just notice that there was a 

small mistake. I am sure you would have noticed by now and would be eager to correct 

me. So, here you go. I stand corrected. We have here 2 times alpha 1 alpha 2; 2 times the 

covariance. Anyway, this result would not change eventually, whenever the covariance is 

0, alright. 

So, now let us actually use this result to derive the variance of X bar. We have not yet 

come to the distribution of X bar. As I said earlier, the expression for the mean and 

variance do not really have anything to do with the distribution of X i’s. So, this result 

that is on the unbiasness holds good for any situation. That is, regardless of whether this 

holds or not.  



Now, we are interested in variance of X bar. Remember, now that we are looking at 2 

random variables; 1 is X corresponding to your population, the variable of interest and 

other is X bar. So, do not get confused between these 2. It is a common thing to be 

confused between X and X bar. But, with some practice you can get over that confusion. 

So, sigma square X bar is what we want. And, we can straight away use this result. We 

know that alpha 1 or any alpha i is 1 over n and because each X i falls out of the same 

distribution, I can therefore say that it is sigma 1 over n square. That is, if I extend this 

result to the n random variable case, I would have 1 over n square times sigma square. 

And, that gets me sigma square over m. This is a very useful result in many different 

ways. Of course, we have derived this result assuming. Now, at this point we have 

assumed that each X i is uncorrelated with the other. We do not even have to assume 

independence, but if the observations are fallen out of a random sample, then anyway 

they are independent and then they are uncorrelated. So, that is anyway true.  

So, the only assumption that we have made here in deriving this is that X i’s are 

independent. We have still not made use of the Gaussian distribution at all, whereas, here 

we have not made use of any kind of assumption; apart from the fact that the X i has a 

mean mu. That is all.  

Now, this is a very important result in many different ways. Remember, we talked about 

precession of an estimate which tells me the variability of an estimate; which tells me 

how X bar varies from data record to another data record. And larger the variability, 

worst is the situation because the estimate that I compute from one data record is not 

truly reliable. So, what we want to achieve is a high precession; which means I want the 

sigma square X bar or sigma square theta hat I may say to be as low as possible. This is 

good. 

So, when can I achieve a very low variability in the parameter estimate or high 

precession in the parameter estimate? Let us look at what affects sigma square X bar. 

One is sigma square; which is the variability in the population. So, this is the variability 

in the process itself. Let us use a term process; Variability in the random process, which 

very rarely we have a control over. Of course if it is a manufacturing process, if it is a 

man made process, then by design I can actually try to minimize this. But, I can never 



take this to 0. If it is natural process such as an atmospheric phenomenon and so on, then 

I do not have any control. 

Therefore, this is something we will assume that it is fixed for an experiment because 

once the process is designed or already naturally in place, sigma square is fixed. So, the 

only factor that I have in control to control a precession is n. Of course, this is not 

necessarily part of hypothesis testing. But, this is something very important to know. 

Eventually, this number of observations, thus play a role in the goodness of the 

hypothesis tests. So, you can therefore think that this is a very relevant discussion.  

As I increase the number of observations to infinity; infinity is a mathematical term; in 

engineering terms, very large. Let us say million observations. Then, sigma square 

anyway is a finite. So, you can expect sigma square X bar to go to 0. So, the result that 

we have is in a limit as n goes to infinity, sigma square X bar goes to 0. This is a very 

good result; which means that as I collect more and more samples, the precession of the 

estimate improves. And finally, at some point sigma square X bar is 0 or an extremely 

low value.  

And, if you recall when we discussed the notion of variance, we said when a random 

variable is such that its variance goes to 0 or its variance is 0, then it loses its randomness 

and becomes a deterministic variable; which means now it will reach a fixed value. That 

is, X bar will reach a fixed value. And, what is that fixed value? Mu. So, what this tells 

us is that as n goes to infinity, the estimate converges to the truth. And, when this 

happens we say it is a consist estimator.  

And, of course now we can ask another question which is typically asked in estimation. 

Whether this is the lowest variability that I can achieve? The positive square root of this 

is called standard error, which will be useful to us in confidence interval construction. 

So, the standard error for X bar under these assumptions is sigma over root n. Again, you 

have to ask yourself what assumptions we have made. We have made an important 

assumption which is that X i are uncorrelated or may be stronger assumptions X i are 

independent. Therefore, if X i's are not independent, which means if you have taken a 



sample where the observations are biased, then this discussion and all the discussions we 

just had need not apply.  

Now, the question that we asked earlier just now, is whether this standard error that we 

have achieved next, we call it as standard error? You should actually make note of this 

standard prefix there because this is not the error in X bar. If this was the error in X bar, I 

would simply go and add it to X bar and get the truth, alright. So, this is standard; which 

means its average error in X bar. Whether, this is the lowest possible error that I can 

achieve in the estimate of mu. Mu is the truth that I am trying to estimate. Is there any 

other way of estimating mean which can give me error lower than this? Although, we 

would not prove anything, it is a widely known result that when the observations are 

uncorrelated. This is actually the so-called minimum variance estimator. X bar is a 

minimum variance estimator of mean.  

In other words, the most efficient estimator; there is no other estimator that can be more 

efficient than this; which means if you were to use sample median, it would have a larger 

error, then sample mean. That is a very interesting thing to know because when you are 

computing hypothesis test, sorry, when you are conducting hypothesis test we have to 

choose a test statistic. That is 1 of the key steps, if you recall in the general procedure.  

So, when it comes to choosing test statistic, there are several options of which we choose 

an estimator that is efficient; that means, it has a lowest error and it is unbiased. These 

are very important things because if I choose a bias statistic to conduct a hypothesis test, 

the outcome of the hypothesis test is also going to be biased. So, it is important that when 

you choose a test statistic for hypothesis testing, you are sure that under the 

circumstances and the assumptions that you have made for the process, you are choosing 

an unbiased estimator. And if possibly, efficient estimator.  

Now, here in this case we were able to verify very quickly that it is an unbiased 

estimator. And of course, we have not proved that it is the most efficient. But, even 

showing that it is fairly easy. In a general scenario, it may not be so easy. For example, 

you know if you are working with the fully efficient or the most efficient estimator and 

likewise, it may be also not so easy to determine whether the test statistic that you are 



using is actually unbiased or biased. But, you can look up the literature and determine 

whether somebody has studied the biased nature of it. Fortunately, for us the kind of 

problems that we are going to look at involves test statistics such as sample mean, 

sample variance and so on. They are all biased. Of course, under some conditions 

nothing is universally unbiased. So, this is a story here.  

Now coming back to the distribution, now we go back to asking where does X i come 

from. What is the maternal place for the random variable? The maternal place happens to 

be Gaussian. And under these assumptions, this result that we have just seen on the 

screen tells me that X bar follows a Gaussian distribution. So, that says all. So, now I can 

put together everything and write that X bar follows a Gaussian distribution with mean 

being the same as they process but, the variance being sigma square over n. This is a 

fantastic result that we have. Now, we can use this to conduct hypothesis test. And, we 

will also show that this is very useful in constructing confidence regions.  

Now, often this result is written in a standard form, so that we say X bar. This is, it is not 

so appropriate to write this. We will not. The reason being when n goes to infinity, when 

n goes to infinity, the variance goes to 0 and X bar no longer has any randomness in it. 

And therefore, we cannot talk of any distribution. So, there is a degenerate case there; 

situation there.  
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On the other hand, if I consider a standardized random variable constructed from X bar, 

which we normally call or denote by Z. This remains a random variable. Even, of course 

when n goes to infinity. And, this we say follows a standard Gaussian distribution with 

mean 0 and variance 1.  

That is why in many text books, you see this distribution being given more often than 

this. Of course, for finite n, this is all fine. It is only for infinite n that does not make 

much sense. This is the birth place of the statement, alright. Which means, now what we 

have understood is when the observations are obtained randomly and they fall out of a 

Gaussian distribution, the sample mean, first of all is an unbiased estimator. It is a most 

efficient estimator of the mean and follows a Gaussian distribution. Excellent, so, this is 

what we want.  

Now, typically this is a procedure that we follow for every parameter estimate. But, the 

question is it going to be that easy to determine. Even in the sample mean case, suppose 

this was not true, then what about the distribution of X bar? This has got nothing to do 

with this here, the distribution of x. The central limit theorem comes to the rescue and 

says that for large n; X bar follows a Gaussian distribution. But, we may not have such 

privileges for other kinds of estimators because what we have here is a linear estimate. 



This is said to be a linear estimator because as you can see the estimate which is X bar 

linear (Refer Time: 27:10) or a linear function of the observations. Linearity has got 

nothing to do with the equal weight-age. I could have given different weights also. 

Linearity has got to do whether the right-hand side is a linear function. And, you all 

know the definition of linear functions.  

So for linear estimators, typically it is easy to derive the distributions especially, using 

central limit theorem. But for non-linear estimator, it becomes difficult because there is 

no theorem (Refer Time: 27:40) to straight away help you, and even deriving some 

expression scientifically. Only for the variance part, it is a bit easy because we have 

random variable which follows a chi square distribution and so on. That is something 

that we will make use of. But, in general when you are looking at a complicated 

estimator, which is a non-linear function of the observations, becomes difficult to 

determine the distribution analytically. That is, by hand. So, then what is the natural 

recourse? A natural recourse is to turn to Monte Carlo simulations; something that we did 

in the example. Remember, we went through an illustrative example where we observed 

that sample mean follows a Gaussian distribution. Here, we have derived it theoretically.  

So, in a general scenario we may have to turn to Monte Carlo simulations, where we 

repeatedly generate the data and then determine different values of the estimator. 

Estimate theta hat and then plot a histogram of it from where we try to (Refer Time: 

28:40) distribution. What if I cannot perform simulations? What if it is an experiment? 

How do I determine the distribution of a statistic for an estimator that is a complicated 

function of the experimental data? That is something which I cannot simulate. Then, 

unfortunately we cannot perform repeated experiments; infinite number of experiments 

that could be a near impossible task. What is therefore done instead is a technique that is 

used called bootstrapping; which again falls within the (Refer Time: 28:56) of Monte 

Carlo methods.  

And, we will not perhaps talk about it now. If I get an opportunity towards the end of the 

course, I will talk about bootstrapping which will allow us to determine the distribution 

of an estimate that I cannot determine analytically. And, but I can determine using a 

single record of data. That is very interesting. Is not it. So, let us wait and see for that. 



Now, let us get back to the more comfortable world of deriving distributions analytically 

for the statistics of interest. So, we now learnt how this single result is so useful in 

deriving the distribution of sample mean. What are other results that we have? The 

second result that we have is the distribution on sum of squares of standardized Gaussian 

variables. 
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So, as the expression shows here what I am doing is I am standardizing X i and then 

squaring it. In this case the standardization, always the standardization of a random 

variable would mean that random variable minus mean of that random variable divided 

by the standard deviation. So here, earlier we standardized X bar, where whose mean was 

mu and standard deviation sigma and root n. Here, we are standardizing X i. 

Now, when I take such standardized variables and square them and then sum them up, 

the resulting random variable that is born out of this operation follows what is known as 

a chi square distribution. This is something that we have learnt earlier when we went 

through some standard distributions. We define chi square variable as a sum of 

standardized squared Gaussian variables. And, there we said that the random variable 

follows a chi square distribution with n degrees of freedom. These degrees of freedom 

have got to do; you can say loosely with the sources of variability, alright. How many 



independent sources of variability do you have? So, here we have n terms in the 

summation. And, each term is contributing to the variance of Y. And therefore, we say 

assuming that all of them are independent of each other. X i's are independent of each 

other. And, which is true when X i, the X one to X n constitutes a random sample. So in 

that case, each term has a unique contribution to the variance of Y. And, since we have n 

such terms, we say that it has n degrees of freedom. 

Quite a few people have difficulty in understanding the degrees of freedom in statistics. 

Degree of freedom is a term that you will see in linear algebra, in engineering. It is a 

very common term that is used. Now, where do we use this result? Of course, we use this 

result in the derivation of sampling distribution of variance. And, I will talk about it later 

on. When we look at sampling distribution of variance, we will see how this result comes 

handy. And, the other result that we may use is when I add up n chi square distributed 

random variables, then the resulting variable also has a chi square distribution. 
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. 

So, if X i falls out of a chi square distribution with r i degrees of freedom, so here it is a 

different. So, what I am doing is I am actually computing the sum of n chi square 

distributed variables. Until now, we have been assuming normally distributed random 

variables. 



When I do that, the random variable that is born out of this operation is also chi square 

distribution with r degrees of freedom; where the r degrees of freedom, is simply the sum 

of the r i or the sum of the degrees of freedom of the respective variables. Again here, the 

important requirement is that each X i is independent. Only then, the degrees of freedom 

add up. A lot of times is independence affects the degrees of freedom more and less on 

the distribution. So, for example, if you go back to the discussion on X bar we have 

assumed that X i's independent and so on.  

Suppose X i were not independent, would that affect the expectation of X bar? Average 

of X bar? No, we have seen that that assumption is not required. Does it affect the 

variance of X bar? Well, it does because the expressions for computing the variance 

changes because the covariance, cross covariance terms (Refer Time: 34:09) and then the 

variance takes a different expression. What about the distribution? Is the distribution 

affected? Typically, not so much; the distribution may still remain Gaussian, but the 

variance would change. At least, this we are talking for the large n case. Here, as well 

when you add up chi square distributed random variables, we may ask; how does 

independence affect the distribution of i and so on? We cannot answer definitively 

because we need some theory. But, intuitively speaking, the first factor that the 

independence or lack of independence would affect is on the degrees of freedom.  

Now of course, what I leave to you as a simple exercise is to verify even this result for 

the independent case through simulations r. Again using the same thing, you can actually 

instead of r norm, you use r chi square r chi sq and add up n such variables and see what 

distribution it follows. I will give a sample and then you can take it from them. 
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So, what we shall do is we say hist. Again, use the same idea and repeat the experiment 

thousand times. What do we do here? Sum up. Let say ten random variables; that are all 

coming out of the same distribution, which is a chi square distribution. In the result that I 

have given, we assumed each random variable comes out of a chi square with different 

degrees of freedom. Here, we will assume that they are all coming from chi square with 

the same degrees of freedom. Just to simplify things. So, now I have to specify the 

degrees of freedom as also nicely the help shows in our studio. 

So, let us say that each random variable comes from a chi square distribution with five 

degrees of freedom. I am summing up those ten observations and I am going to repeat 

this and then I am going to plot a histogram, so that I get an idea of the density. 
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Sorry. OK, right. So you can actually see that in this case, there is a certain asymmetry. It 

looks like a bit of Gaussian, but it is not. It is actually a bit chi square. In fact, what we 

do is we can even reduce the number of variables that I am adding up. Let us say 4 such 

variables. Now, you can see it is tending towards a chi square.  

So, on the other hand if I can, if I actually add up many such random variables which 

follow a chi square distribution, let us say hundred, you can see now the distribution is 

tending towards a Gaussian. So, is this a violation of what we have seen? No because 

any chi square distribution with large degrees of freedom will tend to a Gaussian 

distribution. It takes the shape of a Gaussian distribution. So, the result is not violated. 

The result is still that it is chi square distribution, but with a large number of things that 

we are adding up. So, what is degrees of freedom for this case? That is what we are 

doing is we are adding up hundred variables, each with five degrees of freedom and they 

are independent because r chi square samples randomly. So if you look at the result, it 

says the degrees of freedom for Y is the sum of the degrees of freedom of the respective 

random variables. 
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We have added up 100 of them; 100 times, say 500 degrees of freedom is a way too high 

for the chi square to remain a chi square. It becomes Gaussian. It takes the shape of a 

Gaussian distribution, just may be by about 30 at around 30 degrees of freedom itself. 

So, even when we used 10 random variables to add up, each with 5 degrees of freedom, 

the resulting degrees of freedom for Y was 50.  
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So, truly to see a chi square distribution for Y, we should either reduce the number of 

variables that we are adding up or reduce the degrees of freedom for each of them. So, 

we can do one of these. Here, of course we reduce the number of observations to 4. What 

we can do is we can say it adds up 10, but each with may be one degree of freedom. So, 

here you can clearly see that it is a chi square distribution. And, in fact the exercise for 

you is to check is this is something that you get as a chi square distribution with 10 

degrees of freedom because that is what the theory says.  

We are adding up 10 chi square distributed random variables; independent random 

variables each with 1 degree of freedom. You can either generate the density curve for a 

chi square distributed random variable with 10 degrees of freedom or you can use 

density fitting tools in r. There are wonderful density fitting tools to determine, what is 

the best chi square distribution fit for this? And, you may find that the answer is 10 

degrees of freedom. So, it is a very nice simple excise that you can go through, very 

good. So, you can see simulations really help us a lot in understanding and sometimes 

corroborating the theory. Of course, theory always remains powerful. 


