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Hello friends, welcome to the lecture on the Statistics for Hypothesis Testing, as a part of 

the course on Introduction to Statistical Hypothesis Testing. Before I list the objectives of 

this lecture, it will be a good idea to recap what we have learnt in the previous lectures. 

Now, if you recall we had a general procedure for hypothesis testing that we went over in 

the motivation lecture and let me make use of the board to explain what we have done. 

And, now where we are getting? 

So, what we have said in hypothesis testing that is as a general procedure. 
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We said we will first identify the parameter theta that we want to conduct our hypothesis 

test on, so this is the parameter of interest. So, what is this theta denote? Where does it 

all come from? Well we said there is a random phenomena which is characterized by a 

PDF and we said use the term population to denote all possible outcomes of this random 

experiment or random phenomenon, and this population is characterized by this random 

variable x. Let us say, this could be our solid a propellant burning rate or may be the 

diameter of a nylon connector or anything else as well. Associated with this random 

variable we have either a PDF, if x is continuous value or a P M F Probability Mass 

Function if x is discrete value. Now, this PDF here is typically characterized by certain 

parameters theta, if it is a Gaussian distribution for example this theta would be mu and 

sigma square. For a Gaussian, the parameters of PDF are mu and sigma square that is 

mean and variance. If it uniform distribution then theta are the range, theta is a vector of 

the range of values of the distribution. And then, if it is a binomial random variable then 

you have the P theta is actually the P the probability of success and so on. 

So, every PDF that characterizes a random process or a random phenomenon is 

characterized by these parameters and in basic statistical analysis these are the 

parameters of interest that is the parameters of the PDF. In a more advanced analysis 

such as in may be linear regression or in time series modeling this theta would include 



more than just the parameters or the PDF for example, theta could include model 

parameters such as the slope or the intercept and so on. However, restrict ourselves to 

these kinds of analysis to begin with when we go to linear regression we will include 

more parameter, more elements into this theta. Now, this is the first step in hypothesis 

testing if you recall identify the parameter of interest. Let us take an example to 

understand what we have trying to do here, let us take the solid propellant burning rate, 

example number 2 in the motivation lecture where we were interested in testing whether 

the average propellant burning rate is 50 centimeters per second. So, we are interested 

for example in mu, so the theta n is simply mu. What about sigma square, when we are 

testing hypothesis of this form we may assume that the variance is known or unknown, 

we will even simplify the problem assume that the variability is known. Now in order to 

conduct such a hypothesis test what I have to do is of course, ideally what I would like to 

do is look at entire population and use the definition of mu which is that it is an expected 

value of x; that is, it is average value of all possible burning rates that is I.  

Look at all possible specimens coming from the manufacturing process and then 

experimentally determine the burning rate take the average clearly that is an impossible 

task to finish in finite time. Therefore, what we do is we collect a few specimens 

randomly and then constitute what is known as a sample; that is the basic idea. So, we 

are moving from the (Refer Time: 05:19) or the population space or the outcomes space 

to the sample space where the sample consist of a subset of this and what kind of a 

subset a random subset this that randomness is very important, so that we do not 

introduce any bias in our eventual decision that we will take based on the sample. 

We have spent quite a bit of time in the last few lectures understanding, what is the theta? 

How are the theta defined? What is the interpretation? What is a PDF? What is the 

probability mass function and so on; so, mostly we have learned the theory although it is 

a bit boring but it is a necessary boredom you can say, so that when we move to the 

sample space this is the practicality, this is theory, here we have let us say n observations 

of the same random variable denoted by the subscripts, so subscripts here denotes the 

specimen number, x is the same random variable of interest to make. In the solid 

propellant burning rate x is the propellant burning rate. Now, my goal in statistical data 

analysis as per as hypothesis testing is concerned is to take these n observations and then 



draw inferences of this mu which I do not know through this sample mean that we work 

with so frequently. The big x are the random variables, the small x are the values that this 

random variables take. The burning rate that comes out of each specimen is actually an a 

random variable and I am adding up n such random variables to obtain x bar, why I am 

doing this so that because I believe that this x bar is an estimate of the truth, which I do 

not know and hypothesis testing is about making some comments verifying certain or 

testing some truth statement about mu based on the estimate which is x bar this called a 

Sample mean. 

In general, statistical inferencing is about drawing inferences about the population from 

the observation. For this specific example of hypothesis testing of mean we may work 

with this estimate or some other estimate this need not be the only estimate for mu. There 

are other ways of estimating mu for example, I can use sample median sample mode and 

so on. But the truth is one that is what should be remembered. So, the entire idea now is 

we are moving from the population (Refer Time: 08:09) we have learned the theory that 

helps us understand this statistical description of this population or a probabilistic 

description of this population to sample space where we are going to work with what are 

known as statistics. 

So we are moving from probability world to statistical world and what is a statistic in 

general, any function of the random sample that I collect is a statistic that means, a 

random sample that I collect here it is not specimen the random sample consist of 

burning rates of those specimens. Whenever I subject it to a mathematical operation and 

produce a new number then that new number becomes a statistic. Of course, we have to 

choose statistics based on what we are trying to estimate and the important thing that 

should be remembered is since each x i is a random variable, x bar also inherits the d n a 

and therefore is a random variable this is the main things.  

So now, in hypothesis testing what we were going to do is use x bar as a means of testing 

some claim like this. 
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Where the null hypothesis is mu equal something mu naught and the alternate hypothesis 

for example could be it is naught, so 2 sided tests. In the solid propellant burning rate 

example mu naught was 50 centimeters per second and of course in the alternate 

hypothesis as well. So, from probability to statistics for the purpose of hypothesis testing, 

what we learn in this lecture is we are going to learn briefly about how to sample, but 

mostly about what is a statistic how do I analyze this a statistic because this is a random 

variable, it also has it is own PDF that is a very important point to remember. The 

moment you say something is a random variable it will have it is own PDF and 

rightfully, it has it is own mean and it has it is own statistics and so on, sorry variance 

and so on. So, like any other random variable it has it is own PDF, it has it is own mean, 

it is own variance and may be other moments. What statistical analysis will tell us is 

given some information about where this x's came from, that is some idea of the 

population not necessarily fully obviously, if I know fully then I do not have to sample I 

know everything about the population given partial or no information about the 

population.  

Firstly, how do I construct this PDF and then what can I say about mu and sigma square 

that is point number 1 and point number 2, very importantly for the course which is 

hypothesis testing, how do I now use this x bar and this information to carry out the 



hypothesis test? I am using x bar as a means or as a vehicle for carrying out this test and 

I will show you through a simple illustration in (Refer Time: 11:36) as to why this piece 

of information is very important for conducting the hypothesis test. That is a crux of the 

hypothesis testing. 

Simply, constructing an estimate will not allow us to conduct a hypothesis test. We have 

to go further and construct the PDF somehow either through theory, there is a theory for 

that and then or through stimulation’s what we call as Monte Carlo stimulation, that is 

more of an advance stuff. We will mostly work with cases where I can theoretically 

construct PDF of x bar and then from this I can actually carry out the hypothesis test. At 

this moment for beginners it may not be as obvious as to, how the PDF of this estimate is 

responsible or it is going to help us in carrying out this hypothesis testing. And one more 

piece of information that I want to give is we will generally use theta as the parameter 

and theta hat as it is estimate or as a statistics. This usage of hat in estimation theory or in 

statistical analysis is quite common to denote that it is only an estimate and different 

from truth. Theta is the parameter and theta hat is the estimate and theta naught is a truth 

which I do not know. So, I do not know the truth and I am going to draw some 

conclusions about this based on the estimate, but before I do that I will have to construct 

the distribution of the estimate, this is what we call as the Sampling distribution. 

Hopefully, now it gives you a feel of where we were and where we are going to go in this 

and the next lecture. Once we have understood all of this and a simple example of how to 

use this to conduct a hypothesis test, then the procedure fortunately is as same for all 

parameters, that is very nice of this hypothesis testing that it has a same procedure for all 

parameters in that is why we outline the general procedure. Therefore, what we shall do 

is initially will go through a simple example may be a few minutes into the lecture, 

which will give us an idea of why this is important in hypothesis testing. What is this? 

This is called the Sampling distribution, this f of x bar is called the Sampling distribution 

or also called the distribution of the estimate either way; we will use the term sampling 

distribution. First an illustrative example where will just argue intuitively and use some 

common sense to understand what is the roll in hypothesis testing, and then gradually 

realize may be a couple of lectures later how exactly we use this in hypothesis testing. 
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So, with that prelude let me list the objectives will learn briefly about sampling and 

estimation I will take this opportunity to briefly talk about estimation because as you 

have seen in the black board discussion that what is at the core or crux of hypothesis 

testing is estimation. 

Only when we estimate, we can proceed towards hypothesis testing or even for that 

matter any other data analysis exercise. Once we discuss those then we will spend some 

time on statistics and also spend a lot of time on sampling distribution concepts. In this 

lecture we will only talk of distribution of sample mean exactly what I have discussed on 

the board and in the subsequent lectures we will look at distribution of sample variance, 

sample proportion and sample correlation. 
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I have already explained this as to why we are moving from probability to statistics 

because of practical reasons. There is no way I have access to the entire population, if I 

have that then there is nothing to worry about in the sense I just get the truth straight 

away, it is that difficulty that I have, where, which is forcing me to look at sample 

random subset. So, the main point is we have only finite observation of phenomena and 

from this finite observation can we say something about the population that is the main 

question of interest. 
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As I said earlier, what we are doing is we are moving from probability to statistic, where 

we are moving from the anomalous space to the observation space we can say so. And in 

the course of this statistical analysis, that is analysis of observations and the uncertainties 

arising as a consequence of the uncertainty in the data that is what all the constitutes 

statistical analysis. We have 2 important questions to ask, what kind of analysis is 

necessary? Obviously, that depends on the purpose of statistical data analysis. In this 

course, the purpose is hypothesis testing, in some other exercise it may be regression; in 

other exercise, it may be classification and so on. So, what kind of analysis is necessary 

depends on the application. And then, what kind of data do we actually require? How do 

we collect data? Are there some guidelines? Are there some rules that I have to follow? 

Is there a theory to it? Yes, there is a lot of theory to data acquisition in statistical data 

analysis which is club put together under the banner of sampling. Pretty much like in 

signal processing what you have a sampling, but here it is not about in signal processing 

it is all about thinking of what sampling rates should be chosen and so on.  

Here, it is not about necessarily sampling rate it is about how I collect the sample mainly 

within a sample whether the observations should be independent or can be dependent 

then what is a consequence and all such questions are addressed. And, also very 

importantly when I collect observations they should have sufficient information about 



the parameter of interest clearly. Suppose I am looking at let us say I want to know what 

is the average temperature outside this room and I am going to look at let us say the 

heights of the population here in the city and from their I want to infer the average 

temperature outside clearly, there would not be much information about or no 

information about the average temperature from the height readings of individuals in that 

city correct. 

Then we say that the data is not informative at all. Now, if you turn to the world of 

statistical data analysis, there is a quantity known as Fishers Information introduced by 

Fisher which is quite wonderful it characterizes the amount of information that is present 

in the data with respect to a certain parameter theta. We are not going to talk about that at 

all. In a fully fledged, let us a time series analysis or statistical data analysis course we 

will have many opportunities to do so. So, the bottom line is statistical analysis not only 

helps us in analyzing data that is giving us methods to analyze data, but also tells us how 

we should collect data and whether the data is informative and so on, clearly because the 

quality of analysis depends on the data. So, any analyst should be clearly worried about 

the quality and the information content in the data.  

Many a times we may not control over how the data was generated, but knowing the 

impact of uncertainty in the data on the final analysis is always helpful because, let us 

say you have a data which is of poor quality or not informative and so on you can 

straight away say that either upfront that you can say that well the inferences that I am 

going to draw are going to be highly unreliable and then who ever supplies the data may 

have to work again repeat the experiment to produce better quality data. 

In this course, of course we are not going to worry about any of that very briefly will talk 

about sampling, but mostly focus on the analysis again in the context of hypothesis 

testing on. There are 3 central concepts as you have listen to me speaking during the 

prelude to this lecture, which is that of population, which is the collection of all 

possibilities of a random experiment and then a statistic or the samples which actually is 

a subset of the population that I am observing. 
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Many a times in time series analysis the single sample is called a Realization, because 

we use 1 censor to collect small n number of observations and what we have is not the 

truth, but the truth as perceived by the censor or as realized by the censor. Imagine that 

many of us (Refer Time: 21:37) there are many who watch movie in a movie theater, 

imagine that situation where the movie that is being screened is only once truth is only 

one, but each person in the audience perceive a particular scene entire movie in a 

different way. 

If you were to ask the opinions or the review ratings they would vary widely perhaps 

across the audience, know to movie watchers may give you exactly the same review. So, 

what is happening is that the truth is one, but what the person is reporting is his or her 

perception. The censor is actually watching some phenomenon observing, some 

phenomenon, sensing some phenomenon and giving you the truth plus it is own 

characteristic which has the randomness and that is a why a different censor can give you 

a different reading. We are actually working with what is known as one data record or 

one realization. 

This term realization is mostly used in signal analysis not so much in statistical data. 

Then we have inference, of course this is the concept that we have been speaking about 



drawing conclusions about the population based on the observed data. And, what we 

have is a finite data set and we have to live with that that is the point. The main point to 

remember is, since I have not seen the entire population and I am only going to see a 

finite subset of the population whatever inferences I draw from this finite set will always 

be in error. For example, yes in the earlier discussion on the blackboard the sample mean 

that I am using to estimate mean will never be identical to the truth, as long as the 

number of observations is finite no way you can get actually the truth. Unless the 

observations that you have obtain is the entire population which is not necessarily the 

case for us. 

So, that is a point to remember x bar is always going to be different from mu or theta hat 

is always going to be different from theta naught. 
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Apart from the 3 concepts, we have 3 entities in statistical data analysis. 

One is the random variable, that is an entity which is the main object of interest main 

variable of interest based on which I am actually formulating the entire problem. In the 

solid propellant burning rate the burning rate is a random variable or in the proportion of 

defective items in a manufacturing process the state of the part that I am analyzing 



whether it is defective or non-defective that is a random variable and so on. 

So, that is the number 1 entity that is going to participate in the statistical data analysis. 

And then of course, is your observation set from which you are going to draw 

conclusions about the (Refer Time: 24:40). There is a truth which I know partially or I do 

not know, if there is a random variable which I know exactly what it is stand for and then 

there is a data which I have collected. These are the 3 ingredients that participate in the 

statistical data analysis. 
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 And there is an implicit assumption whether we state it or not I am sure it is common 

sense, that when we collect this is finite observation set we assume that it is 

representative of the process. 

Now, all of that I am saying is not just valid for hypothesis testing, it is also valid for in 

general statistical inferences. Slowly we will drive ourselves towards hypothesis testing, 

but these are the generic concepts that have to be learnt regardless. Now, this is an 

important assumption that the finite observation set is representative of the true 

population. As an example, suppose I want to find out what is the most visited park or I 

want know if I take a particular park, I want to know, what is the average number of 



people visiting this particular park in a day? Obviously, the number of people visiting a 

particular park will vary across days and it is quite unpredictable, so I can think of the 

number of people visiting particular a park as a random variable and I am interested in 

knowing, what is the average number of people visiting that particular park? Now, I will 

not have access to the entire population therefore, I will have to randomly sample some 

individuals who come to this park and somehow carry out my experiment to figure out 

the average number of people.  

Now, if I am doing my experiment properly I will actually select the proper set of 

individuals, but if I am not so careful about the experiment I may end up actually 

selecting people only who come daily to the park. And as a result, if all the individuals in 

my sample are people who come daily only somehow because by virtue of sampling then 

I may end up with a wrong answer. On the other hand, I should just randomly sample the 

number of the individuals who come to the park and ask them, how many times they 

have gone in a month? And, that will probably constitute a better sample.  

That is what we mean by proper or a careful sampling and also mean that the finite 

observation truly represents the population. So, I should not confine myself 

systematically or knowingly towards a subset of the population, it should just be 

randomly done and that is idea of random sampling. 
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And, now let us say once we carry out the sampling. 
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Let me actually quickly talk about sampling and then come back to move on to analysis. 

So, sampling is this act of obtaining subset of data from a population and a random 

sample is that which is obtained in such a way that there is no systematic or known bias 



in your observations. The other way of saying that is all the observations are independent 

of each other which mean a joint PDF of the observations is going to be a product of the 

marginal PDF of each observation. Now, let us talk about statistical analysis. So, I have 

now samples with me and now I want to proceed towards analysis, as I said I am just 

taking this opportunity to talk about some general things about statistical analysis and 

then very quickly we will move on to inferential analysis for hypothesis testing. 

Typically, the first step in data analysis even in hypothesis test you should be doing this 

in fact, is to visualize the data spend some time with the data do not simply take the data 

and load it into some software package and then report the outcome. Then you are not 

really the user is not needed I can write programs that will automate all of this. The users 

roll is in interpreting the results in the context of the process from it is data has been 

obtained and also collaborate the results qualitatively with the visual analysis and see if 

everything is meaningful and so on. There is still a quite a bit of user intervention that is 

required and the first intervention that is required is graphical analysis where we first 

look at the data in the form of displays such as scatter plots, box plots or pie charts and 

so on. So, there are number of ways in which you can graphically represent the data and 

the kind of display that you would choose obviously depends on the data and the 

application, but standard plots include scatter plots or bar plots or box plots where they 

immediately, they tell you what is the range or what is if there is a trend or if there is an 

oscillatory component or if there is an out layer, where is the center located and so on.  

There is a lot of analysis that we can make through a visual inspection and we should 

never undermine the roll of that visual inspection. Once we have done that then we can 

move on to numbers. As an example of the importance or the power of the human brain 

in visual analysis let me give you a simple example where we looking at an oscillatory 

wave in the context of pattern recognition, if I am looking at a sign wave then with the 

human eye let us say there is only single frequency instantly we recognize that there is an 

oscillatory behavior and bit more careful analysis will also help us reveal the frequency 

of the oscillation. 

Now, to do this mathematically and with a help of a computer 1 has to convert the signal 

into a fourier transform into the fourier domain through the help of fourier transform, 



compute the spectrum search for the peak and then locate the frequency at which this 

peak occurs. There is so much of processing that is required. We do not know at the 

moment how are brains are able to detect so easily, of course a visual inspection has it is 

own limitation, but there is a lot of information qualitative information and sometimes 

quantitative that we can gather through visual examination of the data which is otherwise 

quite difficult through a mathematical or a statistical analysis. Once we are through with 

identifying all the out layers making amendments for the data and so on then we generate 

numbers which will tell us more about the data, what we could not gather visually. What 

we mean by numbers is computing mean, computing median, mode and so on. Those are 

the preliminary kinds of steps that we normally take and we should also do that in 

hypothesis testing. It is not that simply I take the number generate the estimate or the 

statistics then generate the PDF the distribution and then apply it plug it into the 

hypothesis testing procedure and that is not how we do it. 

Once we have done with that and then we move on to drawing conclusions where we 

move into the world of inferential statistics, this is where now I am going to estimate 

certain parameters and draw some conclusions about the population or the population 

parameters. And, in particular we are interested in hypothesis testing which is concerned 

with validating some postulates about the population based on the estimates that I have 

updated. 
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And again, associated with this statistical analysis as we know is a random sample there 

is an statistics. So, what do I need for statistical analysis, I need sample that is an 

observation set a data set and then I need a statistic that means an x bar for example, 

which it is a statistic or any other estimate that I am going to compute and then the 

distribution as I said earlier you have the observation data in the mean estimation 

example from which you compute x bar and we also compute f of x bar. These are the 3 

things that participate in inferential statistics not the full statistical data analysis, but 

inferential statistics or you can say hypothesis testing. 
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What is a statistic? What is a formal definition of a statistic? The formal definition of a 

statistic is, as I had explained earlier is that it is some mathematical function of the data 

that you have obtained. The g is the 1 that we use to denote this function and the output 

is theta hat, strictly speaking I should not have a theta hat there I should have some other 

random variable, but we will assume that the statistics are being calculated for the 

purpose of estimation. Now, the reason I say this is there is a settle difference between 

what a statistic is? And what an estimate is? A statistic is some general function of the 

observations that I am probably computing or calculating for the sheer joy of it I do not 

know right, there may not be a great purpose to computing the statistics.  

Whereas, with an estimate there is a definitive purpose, there is a goal in a mind I want, I 

am estimating; I am subjecting the data through this function g, so as to estimate some 

parameter. That is the prime difference between a statistic and an estimate, but we will 

not observe such differences in this course we will use the term estimate and statistic 

interchangeably because we are going to use statistics only for hypothesis testing not for 

the sheer fun of it. So, will you denote theta hat, statistic by theta hat and remember we 

have to keep telling this to ourselves that theta hat is also a random variable in it is own 

right because it is being computed from a (Refer Time: 35:32) of several random 

variables a collection of random variables, all are the uncertainties actually will creep 



into theta hat as well. Remember that there is yet another requirement for the statistic 

which is that it does not require the knowledge of the unknown parameters of f for 

example, if I take sample mean then to compute a sample mean all I need is a data I do 

not need to anything more. 

Alright, so let us look at these two examples at the bottom I have x bar which is a sample 

mean one over n sigma x i that is a random variable, x bar is a random variable it is a 

statistic because on the right hand side I know everything I do not need any additional 

knowledge. Whereas, in the second example I have a new random variable constructed 

from x bar which we do routinely leave, in fact we should get use to this in hypothesis 

testing of means where I am constructing what is known as a standardized sample mean. 

X bar minus mu by sigma let us say; now this z is called as a statistic if and only if I 

know mu and sigma. What are this mu and sigma? This mu is the mean of the PDF 

which is generating the data for me and sigma is let us say the standard deviation of the 

PDF or sigma could be the standard deviation of x bar as well which I do not know, will 

show later on that the standard deviation of x bar can be calculated knowing the standard 

deviation of the PDF that generating the data and the sample size.  

That sigma can be thought of as sigma x by route n, in any case the z is called a statistic 

only when mu and sigma are known. Whereas, x bar is a statistic always because a right-

hand side is not a function of any parameter of the PDF. That is the settle point that also 

1 has to remember in calling something as a statistic. And, I think you should now relate 

this word statistic to the steps that we have outlined in the general procedure in the 

motivation lecture, we said identify the parameter of interest collect data and then 

compute the statistic. 

What is that test statistic? The test statistic is the nothing but the statistic that you are 

going to use for the test which is being computed from the data. 
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That is what is test statistic is. So, 3 few important points to note again something that 

have been repeatedly saying, knowing g typically we know the function or the formula 

you can say loosely that we are going use to compute the statistic or the estimate. We can 

construct the PDF of theta, now this is not such an easy task in many situations in some 

situations it is quite easy depending on the function g for example, if g is linear like in 

the sample mean case it is easy to construct PDF of theta hat. On the other hand, if g is 

non-linear like we see may be in some other complicated estimation exercise may be not 

in this course then it becomes difficult to derive the PDF of theta hat. Essentially, the 

nature of g determines how easy it is going to be for me to determine how the 

randomness in x will propagate to randomness in theta hat, if it is linear it is very easy I 

can use central limit theorem and so on.  

If it is non-linear then very rarely may be in 1 or 2 circumstances I can actually find out, 

but by and large I have to resort what are known as Monte Carlo stimulations to figure 

out the PDF of theta head, but I need that for hypothesis testing I need f of theta hat. 

Fortunately, in this course we are going to work with statistics for which the PDF of theta 

hat is already known in theory I do not have to really turn to simulations for any help that 

is the good news. And, also again the technical term as I said earlier on the board, this 

distribution of statistics are known as sampling distribution which are very useful in 



estimation and hypothesis testing. 
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Now, we are going down further we are slowly narrowing down to our problems of 

interest which is that of hypothesis testing of mean, variance, proportion and correlation. 

Therefore, the statistics of interest for us are sample mean, sample variance, sample 

proportion and in bivariate analysis sample correlation. Now, having said this I should 

also tell you that the hypothesis test are for the mean, variance and proportion and 

correlation 1 of these, it does not mean that I have to use only these statistics I can use 

any other statistics that will help me test those hypothesis. As an example, suppose I 

want to test the hypothesis for the solid propellant burning rate case which is the 

hypothesis test on the mean, I do not have to use sample mean as a statistic I can use 

sample median also right, I can use any other estimator of mean. The only reason why 

we choose sample mean is of course, it is simple and a lot of times it is good and it has 

some nice properties, it is PDF can be determined easily and so on.  

However, if you know that the data is prone to out layers. Your data contains can be 

contaminated with the few out layers then sample mean can actually end up being a 

wrong choice, may be sample median is a better choice because sample mean is not a 

robust statistic. If you look at the theory of statistics there are different classes of 



estimators, robust estimators, unbiased estimators and so on. Robustness has got to do 

with how sensitive this statistic is to out layers in data, in which case maybe it is best to 

use sample median. But if you are sure there are no out layers then it is better to work 

with sample mean because it will give you the least error estimate it is called efficient 

estimate. So, the bottom line is that the hypothesis test is whatever it may be mean, 

variance and so on I can use any relevant statistic to test the hypothesis. The choice of 

the statistic depends on a few considerations, what kind of data? Whether the data 

contains out layers or not? And equally importantly how easy it is for me to obtain the 

PDF of that statistic alright. Now, before we really plunge into the sampling distributions 

of the sample mean and so on, let me take this opportunity to also tell you that statistics 

as I said the word statistic is more or less equivalent to estimate with some settle 

differences that I pointed out. 

And likewise, the inferential statistics is analogous to estimation or is a part, in fact, of 

the estimation. Estimation theory is a very broad feel that is applicable to all branches of 

engineering, medicine, social sciences and so on. 

(Refer Slide Time: 43:19). 

 

And, at the core of any statistical analysis is estimation as we have been discussing. It is 

important to be also familiar with term estimation and we may be interested in estimation 



theory in estimating parameters of a distribution or model parameter or may be signals 

and state space modeling may state estimation and so on. In this course, we are only 

obviously going to be worried about estimation of parameters of distribution and 

estimation of model parameters in linear regression because all our hypothesis test are in 

those context only. The estimation is a very broad theory. 
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And again, a point that I have been saying, it is very important to actually tell this to 

ourselves that any estimate that I construct from data is going to be a random variable 

because it is a function of the sample size right and of course the randomness in the data. 

So, in this context there are several questions that 1 asks in estimation, the common 

question that asks is, how good is the estimate? Right; in the estimation of mean, if I use 

sample mean I would like to know, how good is the sample mean as an estimator? What 

do you mean by good, there are 2 things that quantify goodness, but both are talking 

about the closeness of the estimate to the truth. 1 measure is accuracy which looks at the 

averages of the estimates. Now, here is where I just want to tell you as to why an 

estimate is a random variable another way of looking at it, we have been saying because 

it is a function of the random sample it is a random variable that is all right. 

But, if I want to understand truly, what is this randomness business in an estimate? Let us 



go through this very simple thought process. I collect data, that means I have 1 data 

record I performed 1 experiment where I have generated n observations and from where 

I can construct 1 estimate. I can set another experiment I repeat the experiment under the 

same conditions, I will get a new data record the values of which will be different from 

the values that I got in the first experiment. Now, from the second data record I construct 

another estimate that is I have x bar from first experiment for example, x bar from 

second experiment and likewise think of these as a thought process where I am 

conduction infinite experiments, number of experiments I am repeating this again and 

again and again then for each data record I have an estimate.  

Everything held the same I am getting different values of x bar, that is the mark of a 

random variable right. Remember, we defined random phenomenon as everything a 

whole constant, but outcomes are going to be different. So, I have held everything 

experiment is (Refer Time: 46:14) same everything is sample size is same, I am 

collecting the same number of observations, same censor yet the outcome that is of 

interest which is an estimate is changing from experiment to experiment to experiment 

therefore, it qualifies to be a random variable and therefore it has it is own PDF. Let me 

actually show you shortly an illustrative example highlighting all of this, but let finish 

this first. So, for just now we said per experiment I have an estimate, suppose I were to 

take the average of all such estimates from all those experiment and if that average hits a 

true value then we say it is an accurate or an unbiased estimate right. 

On the other hand, I am worried about the variability of the estimate from experiment to 

experiment which is characterized by the variance of theta hat and the technical term for 

that is precision, we keep hearing this terms high precision instruments and so on. There 

it is about sensing instruments that are repeatedly used to measure the same thing I hold 

a process the same I use a censor repeatedly to see if he gives me the same reading, take 

a thermometer in your home keep measuring the body temperature at the same location 

around the same time just repeatedly and see if you it gives me the same readings. But of 

course, there remember it as a resolution that means it cannot show perhaps beyond a 

first decimal. You may think it is giving you the same reading, but if you at actually go 

into the third-fourth decimal and so on you will see even the second decimal it may give 

you a different reading. So, there is going to be variability in the readings there, here we 



are talking of variability in the estimate they are one and the same almost. 
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We say here that the estimate is more and more precise as the variability in the estimates 

across the experiments decreases, as the variability becomes lower and lower the 

estimates become more and more precise. Which is more important to us in estimation 

typically precision is a lot more important than accuracy, both are important so given a 

chance we would like to have an accurate and precise estimator, but if you have to 

sacrifice one for the other normally one sacrifices accuracy for precision. Because of a 

simple reason if one sacrifice accuracy sorry, precision for accuracy then that means I am 

ok with having high variability of estimates. What does it mean? That means, I am in 

obtaining an estimate of let us say 6.4 in for the sample mean from one experimental 

record. 

Whereas, another experimental record would have generated may be 9.7; that is a very 

high variability. What does it mean, that means that the re-estimate that I am constructing 

from an experiment is not reliable. The precision is a measure of reliability, from 1 

experiment alone I may not be able to draw meaningful conclusions or reliable sorry not 

meaningful but reliable conclusion it is going to be large error in the estimate across 

experiment I do not want that and therefore, precision is a lot more important than 



accuracy never the less both are important given a chance. And, then there are other 

kinds of questions, the most important question in estimation that is of interest to us is 

what can I say confidently about the true process from the estimate is exactly what we 

have been saying right from the beginning of this lecture. 
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And, before we move on to sampling distributions that is learning what is the distribution 

of sample means, sample variance and so on, we may want to look at this general results 

that will help us in deriving the sampling distribution. Before we move on to learning the 

sample distributions, it is probably better to get a feel of what this sampling distribution 

business is all about. We have had a lot of discussion theory and so on, so it will be nice 

break to move into the practical illustration in a software that we are using which is the r 

and let me show you a through an illustration what sampling distribution is all about. 
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Here, I have the r studio in front of me which basically is the d u y and through this we 

are going to understand what is the concept of a sampling distribution and then get back 

to the theory. 

Let us say, I am going back to the same example of estimating the mean and we want to 

try and understand what is a sampling distribution of mean or sample mean. The mean of 

the population is a truth that is a deterministic quantity; sample mean is a random 

variable. Let us do it this way, let us actually generate a random sample from a Gaussian 

distributed population. The problem setting is as follows, if I take rnorm which is the 

random number generator that get me numbers randomly from a Gaussian distribution of 

mean 0 and standard deviation 1, that is what is the rnorm routine in r. Likewise you 

have many other in software packages you have similar random number generators. Like 

for example, in mat lab you have r and m. Now, r claims that the rnorm will get you 

random numbers from a Gaussian distribution with mean 0 and variance 1. Suppose, I 

want to actually test this claim made by this particular software; let me write that clearly 

on the board. 
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Outline this portion here, what r is actually claiming is that the true mean of the 

population the Gaussian population generated from which rnorm is sampling is 0. So, r 

says there is a population here with f of x is Gaussian for rnorm with mean 0 and 

standard deviation 1, we will write this as variance being 1. This is what when I use 

rnorm in r is going to sample numbers from this population. Suppose I want to test this 

claim that truly rnorm getting numbers from this population which means 0. 

I will assume that this is ok, this is correct sigma square is 1 I have no contention about 

that, but only contention that I have is mu is 0. Now I can formulate simple hypothesis 

test which is null hypothesis is that mean is 0; that is in the absence of any information 

the default claim made by r holds because I am not doing anything so whatever claim 

they have they owe the right to take the claim. Once I decide to test their claim, then I 

formulate this (Refer Time: 54:01) alternate hypothesis no, that is not true. 

Now, the only way I can test is, is to sample because the actual possible numbers that 

you can get from this Gaussian population for all practical purposes is very, very large 

you can think of it is infinite. So, what we will do is to test this claim we are going to 

randomly sample 100 observations from this Gaussian population. We are going to 

choose 100 observations and see if I can claim this. Of course, that is the eventual goal 



that we want to get to (Refer Time: 54:37) the intermediate step is to obtain us a 

sampling distribution. We will first illustrate what is meant by sampling distribution and 

then talk about how that is useful in hypothesis testing. 

If you understand this example in it is full clarity, then you have more or less understood 

the crux of or the philosophy of hypothesis testing. Whether it is mu or some other 

parameter the procedure is the same. So, now let us randomly sample 100 observations 

from this Gaussian distribution and syntax for that would be rnorm of 100. 
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Of course, you can specify to make sure that mean is 0 and variance is 1 in r we specify 

standard deviation. So, we say this and now I have this vector of 100 observations in x 

(Refer Time: 55:39). Obviously, if I want to verify if it is Gaussian and so on typically I 

plot a histogram and so on, we are not interested in that at this moment. What we want to 

know is; what if I compute the sample mean from these 100 observations? What is the 

sampling distribution? How do I compute sample mean? 

That is very simple I use, so mean computes a sample mean for you and we have stored 

that in x bar. Let us see what x bar is alright. So, it is this value obviously, we do not 

expect x bar to be 0 because we have only taken 100 observations, you may think may be 



if I take 10000 or 100000 observations I may get 0 may be let us do that. Let us take 

another set of data where I have 100000 observations. Very good, so I have done that 

now let us compute the sample mean from this fresh data. 

So, what is x bar 2, it is very small but it is not 0 and this is going to be the case you may 

increase a number of observations by 1 more factor of 10, you will get a lower x bar, but 

it will never hit 0. However, what probably we can see is as I increase a number of 

observations in my data, in my sample or what we say as I increase the sample size the 

estimated mean which is x bar seems to be converging to the truth and this what the law 

of large number essentially tells you that the averages will converts to the truth as you 

increase the sample size, we will not go in that direction. Right now, what we want to 

know is, what is meant by sampling distribution of this x bar? So, let us get back to the 

100 observation case, what will do is we have already x bar from 1 set of 100 

observations. 

Let us generate another 100 observations, now we will do this and store this in xvec2 and 

ask, what is the value? Alright, so this is a different value that is exactly what we what I 

said earlier. Now, this instance here the first instance where we generated is my first 

experiment, like my first experiment where I have generated 100 observations. And, this 

instance of generating another sample of the same size is like repeating the experiment 

same sample size and x bar and x bar 2 are the sample means obtain from these 2 

respective experiments and obviously they are different in values, because now I have a 

different set of 100 values and if I keep repeating this I will get different sets of data and 

different sets of x bar. 

Now, that itself is an indication that it is a random variable. I am repeating the 

experiment same sample size I get different values. How do I now get the sampling 

distribution, that is distribution of x bar let us say here. One way is to repeatedly do this 

may be put this in a recursive operation like for loop and may repeat this perhaps 10000 

times. Then collect all the sample means from those respective 10000 replicates of 

experiments and then plot a histogram because histogram of anything of a collection of 

data, at least of a random sample sorry will give us a decent idea of the probability 

density function, in this case occur continuous value random variable. We can actually 



write this recursive operation put it in a for loop in each iteration of the for loop we 

generate data compute x bar and store the x bar from each such operation and then plot a 

histogram this is a sequence of steps we can do. 

But, that sounds a lot laborious in r there is a nice way of doing this in a single shot. We 

will do all of that using this, they will say hist of replicate, right. What does this replicate 

do? It repeats a experiment. What do we want to be repeated? First we have to specify 

how many times you want to repeat it let say I want to repeat the experiment 1000 times, 

more number of times I repeat better will be my estimate of the distribution of x bar. So, 

what I am going to repeat? Repeat the calculation of x bar. How many observations I 

want? 100 observations is what I am looking at, correct. And of course, I can specify 

what is the standard mean and standard deviation; to be clear that what I am doing is 

correct. Let us say I want the histogram to plot the probability plot just for the sake of it 

because then I can relate the probabilities very easily; very nice. 

So, here I have this plot where what I have on the y axis is the density function, straight 

away we see that this x bar has a Gaussian distribution right. You can straight away say 

by looking at the histogram that it has a Gaussian distribution. If there are doubts on this 

then either we can increase pretty much we can increase the number of replicates or 

perhaps number of observations. In fact, we will learn in the lecture that theoretically x 

bar follows a Gaussian distribution regardless of the sample size when the samples fall 

out of Gaussian distribution. Here, the sample fall out are coming from a Gaussian 

distribution family, we have 100 not samples it is observations and 100 observations is 

what I have taken. So, I am linearly combining 100 such observations and theory tells us 

that when I combine linearly n Gaussian distributed random variables regardless of what 

is n the resulting variable is also going to follow a Gaussian distribution. That is a 

property of a Gaussian distributed random variable. 
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So, x bar is actually following a Gaussian distribution. I can test this in many different 

ways also, for example; I may wonder whether this is true only for this case or it is true 

for several other cases, so I leave to you to play around with different means and 

different standard deviations and so on. But observe in each of those 2 things, 1 that x 

bar follows a Gaussian distribution, 2 look at where the x bar is centered around that is a 

PDF, sorry PDF of x bar is centered around. On the y axis you have f of x and on the x 

axis you have the count that is the range of values of x bar. So, for example, many values 

of x bar in this interval are that is a lot of probability of finding x bar let me put in this 

way, the probability of finding x bar in this range here within the vicinity of let us say 

minus 0.1 to 0.1 is quite high. Whereas, the probability of obtaining an x bar beyond 

minus 0.3 or plus or minus 0.3 is very low right and let me also show you something that 

whether the samples the observations fall out of a Gaussian distribution or not it is still 

the x bar will still follow a Gaussian distribution. All you have to do is go and change 

here, the f of x that is the population distribution to let us say uniform distribution. The 

point I am trying to make here is whether the observations fall out of a Gaussian 

distribution or they fall out of some non-Gaussian distribution such as a uniform 1 x bar 

will still follow a Gaussian distribution. 



(Refer Slide Time: 64:46) 

 

You can see things have not changed right sorry (Refer Time: 64:55). So, now there is 

something that you should notice as in between in this plot and the previous plot and let 

us go back to the previous plot. 

The PDF is a Gaussian and is centered around what value the origin, that means the 

mean of x bar is 0 which happens to be the mean of x also. So, x bar has it is own mean, 

x has it is own mean. Now turn to the next case where we have generated data from a 

uniform distribution, again f of x bar is Gaussian and is centered around what point 5 

when I changed from rnorm to runif I said I specified this parameter 0 and 1 that means, 

I am sampling from a uniform distribution within an interval 0 to 1. What is a average of 

a uniform distribution recall the examples that we went through, the average is a plus b 

by 2 that is the mean is a plus b by 2 that means, a true minus 0.5. And you can see once 

again f of x bar or is centered around 0.5 which is the true mean. So, in all of this what 

we are seeing is that the average of x bar seems to be the same as the x bar the true mean 

of the population 

As we said earlier, that means this is an unbiased estimator of the true mean. Now 

coming back to the hypothesis testing and we will close the discussion there. Let us go 

back to the Gaussian case r claims that the rnorm samples from a Gaussian distribution 



with mean 0 and 1. Alright, now I have to test this hypothesis what I am going to do I am 

going to do the same thing but not replicate here, I am only in practice I will have only 1 

data record, so I will obtain only 1 x bar.  

(Refer Slide Time: 67:02). 

 

Now, suppose from one data record, let us say I obtain x bar, so x bar is collected from 

100 observations I will indicate this at the bottom of here, it turns out that it is minus 

0.15 this is what I get from 100 observations. Alright, now from this obviously x bar is 

different from the truth and we know it is going to be different from the truth. There are 

many ways now using common sense I can understand what is hypothesis testing, 1 way 

of looking at it is well I was suppose to get 0, but I got minus 0.15 should I consider this 

to be significantly different from the truth. That is 1 way of looking at it, whether the 

difference between the observed value and the truth is significant. But will pose it in a 

different way to just shorten the discussion will assume that this to be the truth will say 

let us say this is the truth. 

Let us say whatever r is claiming is correct. Then we ask if this is true and if this is the 

case that is I have n equals 100 and I am also given that this is correct. I know this is 

correct this is what I have collected so there is no uncertainty about this and this is what I 

am going to test. Now, I shall ask the question, if holding all of these things is this a 



probable how highly or lowly probable this value is? Of course, we cannot ask exactly 

this but what is the probability for example, of the sample mean taking on values within 

the vicinity of this. In other words, we are asking if all of this holds good, the null 

hypothesis holds good, the number of observations being fixed and the variance being 

known is whatever I have observed a high probable value or a low probable value, less 

likely or more likely. As an example, suppose I say I worked very hard, a student null 

hypothesis, student worked very hard. 

Alright, but it turns out that the on the exam the performance is very poor. Then the 

teacher, let us say would want to a test a student’s claim there is a probability that even is 

a student has worked hard the student can end up with poor performance because the 

paper was actually very, very difficult and probably ask questions that never fell within 

the preview of the subject. There is a probability, but assume that is very low probable 

case then the poor performance is not so commiserate with the claim being made by the 

students that students work very hard as a simple example. So, then what would you 

conclude you say most likely it is probably that the students did not work very hard 

something like that. 

So, likewise here, if this is true and if the x bar given all the rest of this 2 be true if this 

turns out be a low probable value then most likely this null hypothesis is not correct. If 

you turn to the PDF you can see that minus 0.15 is not very unlikely value, but what is 

likely and what is unlikely is something that we have to decide up front which we call as 

a critical value. And that depends on the error that I am willing to tolerate. Remember 

there are going to be 2 different kinds of error, 1 that this null hypothesis is true and I end 

up rejecting it, the other being this not being true and I still do not reject it. So, 1 is called 

type 1 error and other is called the type 2 error. Depending on the error that I incur I will 

fix a critical value. If you look at the probability plot there minus 0.5 is not such a 

improbable value. 

But on the other hand, in some other weird experiment for the same process there may 

exist 1 realization, it is possible that you when the base (Refer Time: 71:42) and so on. 

You may end up with some sample such that this turns out be minus 2.305 or plus 2.305. 

Suppose, this is only realization that you have and got you this x bar; this is no longer 



valid, this is a realization that you has such that your x bar works out to be 2.3. Obtaining 

such a realization takes a lot of bad luck. 

But let us say you really obtain that and then you obtain x bar this way, now you said this 

are the only realization that I have. X bar is a fairly reliable estimate that is where the 

precision of the estimate is important. We say I can rely on the estimator; the estimator is 

not that bad. Now, I ask given this to be the true how probable is this value. See the 

probably is extremely low, this is a very rare chance so it is more likely that this is wrong 

and you end up rejecting the null hypothesis. But all of that depends on what kind of 

realization you end up with. So, that is what is a crux of hypothesis testing that you will 

normally hold the null hypothesis being true and then test and that is why the null 

hypothesis are typically of equality types right. If this was a null hypothesis and then it 

would have been very difficult to compute the probabilities of x bar or any estimate that 

is point number 1. 

Point number 2; any hypothesis testing will have an error because we are looking at 

probabilities. And number 3, you should also see and we will see that later that this result 

of rejecting or not rejecting not only depends on the realization, but depends on these 

factors. If I change this 100 to let us say 5, then again things will change and so on. But 

we will see more of this in the next part of the lecture where will talk of sampling 

distributions of mean and then followed by sampling distribution of variance and so on.  

So, we will take a break at this point and then return to the theory in a short while.  

Thanks. 

 


