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Hello friends, welcome to the lecture on the Review of Probability and Statistics, as a 

part of the course on introduction to statistical hypothesis testing. This is part-2 of the 

review the previous lecture we learnt the concepts of probability basics of probability 

axioms and we also studied the notion of random variable, probability distribution 

functions and in particular probability density functions for continues valued random 

variables.  

Now, if I may connect with the overall purpose of this lecture and the previous lecture. 

What we are trying to do is we are trying to describe the truth or the population 

characteristics. Ultimately, we will not be working with the population because what we 

mean a population is a large sample space or the sample space that we have, we will not 

be able to work with that in practice. We collect subsets or what we call as a sample and 

then we work with the data resulting from that sampling and then draw inferences about 

the population. So, what we are trying to do is we trying to understand, how truth is 

being described and what are the parameters of interest was and then gradually will 

move on to the practical or the practicing aspects of hypothesis testing. 

So, in this review what we are going to do is, learn what are known as movements of a 

PDF. 
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In particular, the mean and variance and we will also study the bivariate case, that is until 

now, until the previous lecture, we have learnt how to describe a single random variable. 

But very often we will deal with more than one random variable; for example, in 

regression and so on. We will not the study the multivariable case, but will study what is 

known as a bivariate case. That is a case of 2 random variables, in which situation we 

come across the notion of a joint probability density function or joint probability mass 

functions, depending on whether you are looking at continues or describe valued random 

variables respectively. In that contexts, will study the ubiquitous the most frequently 

encountered measure of relationship or dependence between 2 random variables know as 

a correlation. So, let us begin our journey or continue journey with the univariate case. 

As I said in the previous lecture, we came across a notion of probability density function. 
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Again, to study single random variable associated with the random phenomena. Now, as 

far as theory goes, the probability density functions or the distribution functions are very 

nice to work with. But, the question is, how do you obtain these probability density 

functions or even distributions? It is going to be quiet tough task. There are a few 

processes for which perhaps, you can derive the PDF’s or the cumulative distribution 

functions from the physics or the process as I had mentioned the book by Ogunnaike, 

shows you how to derive the distribution functions, when you know something about the 

physics or the process. But, there are large classes of processes for which we will not be 

able to do that. We will we may not have the luxury to do that. So, how do you now deal 

with that? The natural recourse is to estimate or reconstruct those PDF’s from data that 

we collect and we know, there it is impossible in general for a last class of processes to 

be able to obtain all possible out comes. So, we end up with working with subsets of data 

which we call as samples.  

Now from the sample, we are suppose to estimate the PDF now; if you turn to the 

literature on the estimation of PDF’s or the probability density or distribution functions. 

There exist no highly reliable methods for estimating this PDF’s there are; it does not 

mean that there are no methods there are methods but they are not as reliable as those 



methods that exist. For example, estimating averages variances and so on. So, can we 

work with those methods that, estimate averages or estimate variability and so on. And, 

that is what we are going to talk about briefly now. So, if you look at practically knowing 

the PDF of a random variable is not going to be possible theoretically. If at all it is 

possible in a few cases, it should be in the case then as I said, just know you will have to 

conduct experiments now the good news is in many situations, you may not have to 

reconstruct the PDF it may not be the necessary to know the full PDF as a simple 

example; suppose, I am visiting new city which have never visited and I need to make a 

decision on what clothes to pack in my bag.  

What type of clothes; should it be in a woolen clothes or cotton clothes and so on? That 

is depends of course, on the temperatures that prevail in the city. So, what would I do as 

a lay man or even as a general user, traveler? I would actually go to the website or 

consult some book or some one and seek information about this temperature and 

obviously, the temperature in a city can be thought of is a random variable, because it is 

not predictable accurately, on any day. So, it is meaningful to treat it as a random 

variable. However, if you think of gen, very rarely do we ask for the PDF of the random 

variable it may sound as big silly to think of the PDF of the temperature in a particular 

city. Practically, what we would be interested in is some basic so called statistics the 

minimum, maximum average and so on. And, with these pieces of information we are 

able to make a decision at least to begin with some decent good decision that we can 

actually make on what kind of cloth to pack.  

The question is how many pieces of information such information sufficient to begin 

with? So, again going back to the same example, I would like to know, I need to know. 

For example, what is the average temperature that is the first piece of information, that I 

would like to know if the average temperature. Let us say transfer to be 10 degree 

Celsius then going from a tropical country to such a city would mean, that I may have to 

pack cloths for or pack winter clothing in addition I would also need one information 

which is the range of temperatures that one gets to see in that season during which I am 

visiting, which we call as which we may either measure by minimum and maximum, 

which we will give us an estimate or we look at the variability or we what we call as a 

standard deviation. Once I know that let us say that this particular website tells me that 



the standard deviation is about 10 degree Celsius so, that means I can expect 

temperatures anywhere between 10 plus or minus, may be two standard deviation; 20 

and so on. So, that is a quite a lot of variation.  

Nevertheless, never less is just an example. Not to worry about it and this 2 sigma 

interval that we look at is ideal, if you think of this random variable following a Gaussian 

distribution and so on. But, those are more detailed aspects of it the bottom line is I am 

glad or sorry I am fine with knowing with these two pieces of information. As far as my 

decision making is concern and that is the case usually in practice we are mostly 

interested in mean and variance and perhaps of course, it not mean median and so on. 

Which are representatives of the most likely value or the expected outcome and how far 

the outcomes are spread? Respectively; so, the mean tells me, what I can expect when I 

visit the city and the variance gives me an idea of what is the spread of the outcome, 

what are the extremes that I get to see. So, to summaries instead of working with PDF’s 

it is convenient to work with this 2 kind of statistics you can say population statistics or 2 

parameters of the PDF’s and so on. Now, it turns out that the mean that we are talking of 

is nothing but the first movement of a PDF. 

(Refer Slide Time: 09:31). 

 
 



Now, many a times people have difficulties understanding or interpreting this probability 

density functions but, it is convenient if you take an analogy in mechanics of the mass 

distribution or the mass density functions typically we talk of densities which is mass per 

unit volume but we can also talk of mass per unit length we call is as specific mass. So, 

this density function that we are looking at is pretty much analogous to the density 

functions that we see in mechanics and we know from mechanics. We also have 

movements and so on; which tell us it give us an idea of where the center of mass is for 

example, with we have learnt center of mass center of gravity and so on likewise here we 

have a set of outcomes spread over range and we would like to know where the statistical 

center is, that is what is a most likely outcome or what is an expected outcome as we got 

and for this purpose we introduce this term called expectation it is strictly an operator 

and typically denoted with the symbol e with. So, we write expectation of x as you see in 

equation one here, which is also conventionally denoted by the Greek symbol mu and it 

is defined as minus this integral here running from minus infinity to infinity x times f of 

x dx, now this minus infinity to infinity should not be looked upon numerically but more.  

So, symbolically they represent the left and the right extreme values for the single 

random variable and we know that this integral is the first movement of the PDF, again 

from mechanics. Now, strictly speaking there should be a denominator in this and that is 

often avoided for a reason. 



(Refer Slide Time: 11:37). 

 
 

And let me tell you that, we have mu as integral x f of x dx in the expression; however, 

strictly speaking you are suppose to have an integral f of x dx also. Now, probably, you 

are in a much better position to relate to the expressions that you see, that we get to see 

in mechanics. Of course, a limits are the same; integration limits are the same on both 

integrals but, we know by definition of the probability density function that the area 

under the density function is unity and therefore, this is avoided. In fact, we talked about 

this any dens any function to be called as density function should satisfy this criterion. 

So, it is assume that we have already done some kind of normalization. So, that this 

legitimate requirement is met and therefore, we do not need to write this anymore, it is 

understood, it is an invisible denominator which is unity, alright. 

Now, of course we are talking about continuous valued random variables here and there 

is also another interpretation, rough interpretation that you can take from this integral. 
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Approximately, if you think as the integral as a summation, after all integral has limiting 

case of the summation then and if you divide the outcomes space very finely let say, it is 

a continuous valued outcome space or sample space and you divide it very finely into a 

grid and call the i th point on the grid as x i; then you would say f of x i dx i here. So, 

you have the integral being replaced by summation approximately. So, look at what this 

expression carefully. Now, you have x i times f of x i times dx i this f of x, i dx i is a 

probability of this random variable taking on values in this infinitesimal interval x i and x 

i plus dx i. So, this is a probability that the random variable will take on values in this 

small or infinitesimal interval. So, what you are saying is that the average value is the 

particular outcome weighted by this probability and this, what one gets to see for discrete 

valued random variables for discrete variable, you will not see integrals we will see 

summations in that case. We replace f of x i dx i by the probability of x taking on that 

value itself, but this is continuous valued case. Therefore, we tend to write this way. So, 

this kind of helps us remember or probably get a better interpretation of this integral. 

Now, this expectation operator is a fundamental operator in all in the entire theory of a 

probability and one needs to be quite comfortable with computing expectations of 

course, in hypothesis testing it may not be required, but what is required is interpreting 



this expectation in a correct manner whenever we compute expectation of a random 

variable x or expectation of any function of that random variable we are essential doing 

is computing the statistical average or you can say the Ogunnaike average or the average 

across the population and so on. It is not the average in time at all there is it is often 

misconstrued and misconceived as being average in time there is no notion of time. Here, 

the expectation is an averaging operation that is being performed across the entire 

population space. In fact, the expectation of g of x is nothing but integral g of x times f of 

x dx. So, g any function of a random variable is also random variable that is the first 

point and therefore, it would have a statistical average and that is once again written this 

way and you can give similar interpretation as we have given here. Whenever x occurs 

you can calculate g of x and that is weighted by the probability. So, your actually again 

doing the same thing we use this expression to compute or to come up with the definition 

of variance as we shall see shortly. Let us go through couple of examples on computing 

theoretical or the population mean. 
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Let us say I have a random variable that follows Gaussian distribution and I want to 

determine the mean. Now, the piece of information that we require to proceed is the 

density function and we know that the Gaussian density function has this expression; 1 



over sigma 2 phi exponential of minus half x minus mu by sigma to the whole square. 

Therefore, I plug in that expression for f of x in the definition of mean and if you work 

out the integral of course, you need a bit of math here and am skipping all of that 

eventually, the answer works out to be mu and that is why we have been using this 

symbol mu in the first place itself, right. So, that tells us we have used mu in the PDF. 

And, going to the second example; suppose, I have a random variable that follows a 

uniform distribution. Now, we know that the uniform distributor random variable has the 

PDF in the interval a coma b as a 1 over b minus a then the expectation is once again 

integral x times 1 over b minus a d x running between running from a to b because those 

are the left and right extremes and it is clearly b plus a by 2 that is intuitive. So, what is 

important here? Is that the mu, that we are seeing is a statistical center it is not 

necessarily the geometrical center of the outcomes and I will talk about it briefly, but in 

these 2 distribution both Gaussian and uniform distribution are symmetric about their 

means therefore, the statistical center and the geometrical center workout to be the same. 
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Now, as I mention. So, I just want to go through few make a few remarks on the mean 

itself and then I will again comeback to the statistical center and geometrical center part. 



So, the integration in equation integral in equation one is across outcome space as I had 

mention earlier and not across the time or any other special or frequency domain and 

wherever you see expectation hence forth, you should think it as an averaging operation 

and of course, there is a reason why we have given that name expectation will talk about 

that. There are other measures for the center of outcomes mean is not the only measure 

of the center, remember the reason why we are working with mean is we want to know 

the point around which the outcomes are anchored and that will first help me establish. 

Where in the space of real numbers the outcomes anchored around like in the city visit 

example what is the center around which central or the temperature around which the 

temperatures during the season that I visit are anchored; so, another alternative is 

median. Now, we know that the definition of median is that value which divides the 

probability distribution into 2 equal halves. Let me explain that. So, the theoretical 

median the definition of median is defined as the center sorry, the point at which f of x 

hits the value of 0.5 which f here is the probability distribution not the density. 
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We know that by definition f of x is the probability that x takes on less than or x takes on 

value less than or equal pre specified values x of x. So, here is a median which need not 

be it depends on the distribution. Whether this median is exactly suppose here i have the 



extreme value now let us say 0 and let say here this is x max this median need not 

coincide with the geometrical center. So now, we are talking of statistical center and 

geometrical center. So, if you look at it exactly biased on the schematic that i have drawn 

here the geometrical center is here and let us assume that here is the distribution which 

coincides. That is the median coincide with the geometrical center. 

Now, this occurs for symmetric distribution for example, for Gaussian distribution and so 

on. But you can have another kind of a PDF which for example, here that goes this way 

and the 0.5 probability is achieved here. So, here is a median, right, this is also legitimate 

probability distribution function, but now the median is here in this case. The median is 

not coinciding with the geometrical center and same explanation can be given for mean 

as well the mean is just a statistical center. Now, it is best understood from a prediction 

view point suppose your visiting now going back to the city visit example suppose you 

are predicting in your mind essential that is what we are trying to do we are trying to 

predict; what would be the temperature on the day I land? For example, what is that 

single number that I can use as a prediction for the temperature on the day I land and that 

single number if you call as c, what kind of prediction do you want to make? You want to 

make best prediction, but best in what sense; well we want to predict in such a way that 

we want to predict in such a way that we minimize the average error from all possible 

outcomes. 
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For example, here this is the (Refer Time: 22:43) for x and let us say outcomes are 

spread any were between this x min and x max and that outcomes along this continuous 

up and I want to predict in such way that is c is prediction. Let us say, it is a somewhere 

here; I do not know where it is. The c is to be in such a way that it is at a minimum 

distance from all possible outcomes on an average but, which average statistical average. 

So, this we call as a minimum means square error criteria. So, the mean has very nice 

interpretation because now the solution to this you can actually solve this you say find c 

that minimizes this objective or cause function, you will find that c star (Refer Time: 

23:37) nothing but the expectation of x just using standard optimizing techniques you 

can arrive at this solution. 

So, what this tell us when I do not have any other information at all about the random 

variable and I know, let us all the outcomes or let us say have given me all the outcomes 

then I simply take the average of this outcome and that is the best prediction it does not 

mean that, that will be the value of the temperature on the day I land; it is not, but I 

minimizing the risk that is all that actual realization that will occur, will only occur when 

I land and that typically will be different from c star but, if were to look back on the day 

and ask you know, I have, if I wish, I had made a better prediction, very good prediction 



in the minimum mean square error. Since this is the best prediction that is why intuitively 

perhaps we tend to work with averages, but having said that it is best in some sense that 

is this mean is best prediction in some sense and not best in some other sense or so but, 

we will not go into that the purpose of this discussion is only to give you a better feel of 

the mean, right. As I said, you could also work with medians and so on and there are 

distribution for which mean is a much mean is much better suited then median and vice 

versa. Now, for symmetric for Gaussian distribution the mean and median coincide that 

is something to keep in mind. 
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Let us move on to the case of discrete valued random variables. As I said earlier all that 

we do in the discrete case is that we replace expectation with sorry the integral in the 

expectation with the summation; obviously, because now we are not dealing with 

continuous valued random variables there is no notion of density but rather we have a 

probability mass function f of x. So, this you should not get confuse with the same 

notation that you are using you have to interpret f of x in the context if it is a discrete 

valued random variable f of x is a probability mass function if it is continuous valued 

random variable. Then it is a density function as an example suppose i am looking at a 

binomial random variable that is a random variable which can only take which comes out 



of a trail, right. What is a binomially distributed random variable? Recall from the 

previous lecture. I conduct n Bernoulli trials, where I have n trails and in each trail there 

are only 2 outcomes that are possible with the probability of the success as we call as you 

label being p and then of course, the other assumptions that this probability remains the 

same and each trail is independent of the other and so on. Then the number of successes 

x, successes in n trails with p being the probability of success follows a binomial 

distribution. So, for such a random variable the average is n p it is fairly straight forward 

all you do is you invoke the definition that is expectation of x is simply sum of 

expectation of the individual trails and that comes out to be n times p you can work out 

the math, if you have difficulty you can ask us this is a standard example that you come 

across. 
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So, mean is the as we say you can say the first not statistic, but say you can say the first 

population statistic you can say vital statistic of the PDF and so on; that we would be 

interested in and that is easy to estimate we have of course, gone through only the 

theoretical definitions. The expression for estimating mean will be given in the following 

lecture the next quantity of interest was as we have discussed earlier, is a measure of the 

spread of a outcomes we have learnt how to characterize the center of the outcomes. 



Now, we want to know the spread, how far the outcomes are spread around the center 

and that quantity is variance and this is a fundamental quantity in decision making. Now, 

at this point I also want to make another aspect of hypothesis testing or statistical 

inferencing clear, which that until now we have been talking of random variables and we 

have been thinking of random variables being associated with the random phenomenon; 

however, random variables can arise in many other situations also.  

So, for example, let us say I want to estimate the mean we have seen the theoretical 

definition of mean how would I go about estimating the mean; I would collect some data. 

So, if it average temperature that I want to estimate then I would let us say, in this room 

that I want to measure the estimate the average temperature I would come with the 

censor and maybe install it at suitable location collect data, maybe for half an hour and 

then let us say, I have about 30 samples or maybe I collect every half a minutes I have 

120 sorry 60 samples and then am going to take average of all of that because intuitively, 

we feel that the simple average will give me a good estimate of the true average which I 

do not know or the population average. 

Now, how did we construct the simple average we have constructed this by simply 

averaging adding up all the observations that I have; however, we should not forget that 

each observation is a random variable in itself. So, what I am doing is actually adding up 

all the random variables that I have or all the 60 observations that I have and coming up 

with the new random variables. So, the sample mean as we call is also random variable. 

So, that we will also have it is own PDF, it will have it is own mean it will have it is own 

variances and all the other movements that you can think of. So, now, we should broaden 

our notion of a random variable from the simply as a outcomes of random phenomenon 

to operations on random variables, to include operations on random variables as well; 

when we do such operation as we will learn in the next lecture, the sample mean; the 

sample mean that we are talking of, x bar. 
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Let us say, I have n observations. We just now said that this sample mean as it is 

normally known sample average is being constructed from n random variables. This also 

has a same dna as this, that is what is a d n quality of that randomness. So, x bar inherits 

it is randomness from the observations therefore, this also should be treated as a random 

variable and it has it is own PDF f of x bar or mu x bar and so on or may be even 

variance as we shall define and so on. So, it has it is a random variable in it is own, right. 

Now, very often what we are interested in is this sigma square x bar as will become very 

clear in the next lecture because this is a measure of how much error we are incurring in 

x bar with respect to the truth; the truth is mu x and the entire purpose of going through 

this is to get an estimate of mu and sigma square x bar is a measure. In fact, the square 

root of that is called the standard error, is a measure of how far x bar is way from it is 

truth and mu x bar is how accurate is an x bar is x bar as an estimate of mu. So, mu x bar 

is also important. In fact, if the mean of x bar, what is mean of x bar? Very simple, from 

one experiment I have n observations; from another experiment I have another data 

record of n observations and so on, so, for each such experiment. So, let us say I conduct 

r experiments and in the big r and this is the k th experiment. So, this x i supper script k 

is nothing but the observation from the k th experiment and I have r such experiments. 



So, which means for each experimental record I can construct 1 x bar and I have as a 

result r x bars. Now, extend this r to infinity; that means, I have performed infinite 

numbers of experiments. Why have I performed infinite number of experiments? May be 

to see all possible outcomes perhaps and if I take the average of all such x bars that is 

here mu which we call as the expectation of the x bar, right. So, that is the interpretation 

of mu x bar of course, will talk more about this later on. 

So, the variance is define as the average of the distance square distance of the mean from 

the outcome or outcomes from the mean whichever were you, look at it. So, we say that 

it sigma square measures how far the outcomes are spread around the center. So, it is 

actually a central movement, it is not a pure movement. A pure movement would have 

been pure second order movement, would have been integral x square f of x dx. This is a 

central second order movement meaning that we are measuring we are calculating this 

movement around the center now of course, these are very common movements and 

cumulants in statistics and this sigma square for random variable if it is with respect 

coming out of a random phenomena, then it is a measure of the spread of outcomes or as 

we have just discussed if this random variable corresponds to some value or number that 

am calculating again out of the observations which we call as statistics. Then, it will 

measure or it is the measure of the error in average error in the number in x bar for 

example, with respect to the truth now an often when you turn to estimation like we just 

discussed for example, sigma square x bar would be a measure of how precise an x bar is 

as an estimate of mu and this variance is very important because lower the variance 

lower is a spread of outcomes.  

In fact, the limiting cases when sigma square x goes to 0, then what happen to the 

randomness in x? Well, the random x ceases to a random variable and become 

deterministic again here this variance should not be confused ever with the variability 

that you see in time for any signal or any data that is variability computed across time 

here. The variability is being computed across the Ogunnaike across the sample space or 

the population alright and in defining the variance. We have used the previous expression 

that I gave you expectation of g of x is integral g of x f of x dx and the positive square 

root of this standard variance is known as a standard deviation. 
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And, you can also re-write the variance as expectation of x square minus mu square 

clearly telling you that if there is a random variable; which has 0 mean, the second order 

movement which is expectation of x square and variance coincide and as I said earlier 

large variance indicates that the outcomes are spread widely far up, far away from it is 

center. 
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Now, as usual what is the variance; we talked about the discrete random variable case. 

Again, we replace the integrals with summation otherwise, nothing changes you have 

instated of probability density function probability, mass functions and as an example; if 

x is a binomial random variable again, where you have n trails and you are looking at x 

number of successes with p being the probability of success, then you can workout the 

math expectation of x minus mu whole square is n time sigma variance of the reason. We 

are simply adding them up is because the trails are independent, you should remember 

that and then it works out to be n p times i minus p when you work out the math. I am 

not going through the math because the purpose of this lecture is only to review. 
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As an example of the variance for the continuous random variable case, you can look at 

again the Gaussian distribution and when you workout the math it turns out to be sigma 

square and again, that is the sigma square is nothing but sigma square that we see in the 

PDF. So, again, we now understand the reason for which we have used this Greek 

symbol sigma square early on in the PDF. 
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Now, in the case of a Laplace distribution that we have seen earlier the variance works 

out to be 2 b square. So, it may be a good idea to go through this examples more in detail 

for you own insights and for your own learning, these are just example to make you 

comfort with expectations. In general, we are more interested in the statistics and the 

hypothesis testing part in this course, in a full probability and statistics course we would 

have more time to go through the detailed derivation of the answers. 
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Now, very often we may work with scaled random variables that is, I may have a 

variable x and I may construct a new variable y; which is alpha x plus beta. You will see 

this often in linear regression for example, where I have 2 random variables x and y and I 

think of y being linearly related to x. It is not exactly linear, this is called an affine 

relation linear would be simply y equals alpha x. So, when I know the mean of x and 

variance of x and of course, knowing alpha and beta; can I know the mean of y and 

variance of y, of course; I can. So, simply apply the expectation operator and remember 

that the expectation operator is a linear operator as a result mu y is alpha mu x plus beta, 

all you have to do is apply the expectation operator the expectation of y is alpha times 

expectation of x plus beta, that is that gets you the answer in 12 equation; in 12 and 

likewise. The variance of y can be obtain as alpha square sigma square y, now what 

should be observe is that the variance in y is not dependent on beta at all because what 

beta is doing is simply causing a mean shift in x, you can say your shifting the mean of 

course, scale by alpha as you can see from equation 12, but variances are anyway 

measures around the center therefore, changing the center should not cause a change in 

variance that is how you should interpret the results. 
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And finally, there are many situations where we may add up variables that are Gaussian 

distributed in a linear way as you can see here suppose I have y. In fact, I the notation 

should have been upper case just note that. So, if I have n random variables a big x 1 a 

big x 1 up to big x n and I am constructing new random variable which is a linear 

combination. Assume now that, this n random variables x is falling out of a Gaussian 

distribution and so, are called unrelated will talk about correlation shortly. Then y is also 

a non Gaussian or normally distributed variable with the mean being again you just have 

to extend the results that we have seen in the previous slide where we talked about scale 

random variables. So, if you simply extend those results you get mu i as being a linear 

combination of the means of the respective random variables in the same proportion as y 

and sigma square y being sum of a 1 square, sigma 1 square and a 2 square sigma, 2 

square and so on, up to a n square; sigma square n, this is quite useful for us later on 

when we are trying to derive the distribution of x bar.  

For example, we saw x bar as being an average of n observations suppose, those n 

observation are falling out of a Gaussian distribution, using this expression I can 

calculate the PDF of x bar or of course, once I know the mean and x bar. First, I know if 

each x s falling out of a Gaussian distribution x bar has a Gaussian distribution and 



secondly, the mean can be calculated knowing the means of the respected observations 

and variance can also be computed in effect I know that x bar then has a Gaussian PDF 

with the mean given by mu y as shown in slide and variance given by sigma square y 

again as shown in this slide. So, you see straight away we are able to use this result to 

compute what is known as a sampling distribution this term is something that will talk 

about this more in detail in the next lecture 
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And, that also takes us to the very familiar central limit theorem which essentially say, if 

I have n random variables, but the relaxation here is this n random variables need not 

come from a Gaussian distribution. Earlier, we had seen for a specifically for a Gaussian 

distribution, now we are saying what if the observations or these random variables are 

falling out of a non Gaussian distribution, but all of them falling out of let us say 

identical distribution same distribution and that they are independent. So, there are 2 

relaxation here; one, we are moved from a Gaussian to some general distribution, but 

they are identical and two, we are moved from uncorrelated to independent. Both of 

these terms will become clear shortly, when I will take such random variables and add 

them up to produce a new random variable y subscript n, then as n goes to infinity that is 

the number of such random variables I am adding up goes to infinity the distribution of y 



minus n by sigma root n follows a standard Gaussian distribution that is very easy first 

thing for you to show is expectation of y, that is average of y is nothing but n times the 

average of x because all x’s are falling out of an identical distribution and again you 

show that the variance of y is nothing but n square sorry, n times sigma square x 

therefore, the standard deviation y is simply root n times sigma.  

And we know that, of course, the only thing that is not obvious which is the theorem is 

telling us is that y when n becomes very large, this new variable y follows a Gaussian 

distribution that all and that is what we have used in written this theorem of course, the 

proof of this is available in any standard text in the literature every where this is a result 

that we will use later on to derive what are known as sampling distribution or distribution 

on x bar and other statistics. 
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So, with that we come to a close on the review of the probability and the movements of a 

PDF. There are other movements of a PDF that one can think off such as, a Skewness; 

which is a third order central movement or Kurtosis skewness is the measure of 

symmetry for example. And, for a Gaussian distributions skewness is 0, because it is a 

symmetric distribution and kurtosis is a measure of another feature of PDF and so on. 



But, we do not worry ourselves with higher order movements because it is sufficient to 

know and in this 10 hour course that is all we can discuss. Now, we move on to the 

bivariate analysis. As I had mention early on in the lecture very often, we may be dealing 

more than one random variable as a linear regression for example, in thermodynamics 

we know that temperature and pressure of an ideal gas are related at a fixed volume. So, I 

have temperature measurements, I have pressure measurements; both have randomness 

in them and I want to analyze them jointly. I want to see if temperature is linearly has a 

linear relation with pressure as predicted by the ideal gas law for example, then what 

would I do? I have to now analyze this temperature and pressure jointly or it is believe 

that height and weight of an individual in bio medical field and in medical field you 

know that the height and weight of individual are believed to be related to each other, so 

I have an individual for which I have taken height and weight am looking at an entire 

population. I would like to know how they are related; again, I have to analyze them 

jointly. When can I analyze these individually? When there is no relation between them, 

but we are not interested in such situations anyway. 
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So, for this purpose we introduce typically work with what is joint probability PDF 

because now, it is like two students working on a project together, we say that they have 



probably linearly influenced thoughts then we have to evaluate them jointly becomes 

difficult to evaluate them independently. So, the same case here. Now, we are dealing 

with continue valued random variables, all the notions of density, distribution and so on 

carry forward except that, in place of univariate we have joint functions, that is all.  

So, the density; joint density now once again helps me in computing the probability that 

these 2 variables, again it should have been X and Y; big X and big Y taking on values on 

between x 1, x 2 and y 1, y 2 respectively. So, now, we are looking at a cell we are not 

we are looking in two-dimensional plain, we moved from a single dimensional real 

access to two-dimensional real access assuming they are all real value. Now, we can ask 

many questions in this situation among which 2 are of interest to us. First of all we can 

ask what is a probability that x can take on values between x 1 and x 2, regardless of the 

outcome of; I do not care what is a weight on individual, I randomly pick individual what 

is a probability that the height of the individual is between 5 and 6 feet for example, I can 

ask that, it is a very valid question to ask and vice versa. Here is where we come across a 

notion of marginal density. On the other hand, I can also ask what is a probability that 

given, that the weight of an individual is 50 kgs, that the height is between 5 and 6 feet. 

Now, obviously, that is going to be different from the earlier one, where we are looking 

at unconditional probability.  

So, in the first case we are talking of unconditional probability, now we are talking of 

what is known as conditional probability. If you recall we have talked about this in the 

previous lecture as well. When would these two be identical, the unconditional, 

conditional probability? Intuitively, when x and y are independent of each other; when 

height and weight for example, have no influence on each other then the conditional-

unconditional would coincide. Of course, there are a strict theoretical considerations 

when you talk of saying given that the weight of individual is exactly 50 kgs, but strictly 

speaking we are not suppose to be talking that way, because as we said in the previous 

lecture, where for continues random variables we do not talk of probabilities that a 

random variables takes on an exact value. The way this conditional probability should be 

interpreted therefore, is what is a probability that the height of an individual is between 5 

and 6 feet; given that the weight of an individual is in very small vicinity of 50 kgs, but 

we do not keep saying that, but you have remember that in your minds. 



So, with that we introduce a notion of Marginal density and Independence, right; we 

have just spoken of that. 
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Marginal density is like on your page of book is two dimensional, we have margins. So, 

remember this. When we walk along with one dimension, and adding up all that we 

encounter across another dimension we end up with marginal density. So, the marginal 

density certifically denoted; for example, the marginal density of x is denoted by f of x 

subscript x. That subscript x is telling you that it is marginal density, it is not necessarily 

the density of x alone. There is a difference between marginal density and just PDF of x; 

the difference is that the marginal density is obtained by adding up or integrating the 

density along the y access alone whereas, the density of x is taking into account probably 

all other factors also that are related to x. So, there is a difference and therefore, it is 

important to maintain that notation, f of x subscript x. Likewise, you can define marginal 

density of y as well. 

Now, we say that two random variables are independent, if the joint PDF can be written 

as a product of the marginal density, respective marginal density. This has a strong 

relationship or resemblance to what we wrote in terms of probability, we say 2 events are 

independent if probability of A and B occurring together is, probability of A times 



probability of B. Once again, do not confuse your independence with mutual exclusive 

events, that is different. Mutual exclusive events, probability 0, that both will occur 

together. And, as we spoke of conditional density earlier were we said, given the weight 

of an individual is 50 kgs; what is a probability that the height is between 5 and 6 feet, 

such probabilities can be calculated by the use of what is known as conditional densities. 
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And this conditional density expression is arrive by using base theorem or base result, 

which says that it the joint PDF divided by the marginal density; again, there should have 

been a subscript there, marginal density of x. Likewise, you can. This is the conditional 

density of y given x, alright. Likewise, you can write f of x given y, which is f of x 

comma y by f of y. And now, we can go back and relate this to independence that is 

suppose 2 variables are independent, then we just said earlier that the conditional 

probability and the unconditional probability would be identical; likewise, conditional 

density and unconditional densities would also be identical. I am just stating this without 

any proofs and so on. So, f of y given x would be the same as f of y or f of x given y 

would be the same as f of x; now, using this definition and the other relation that we just 

said is straight forward to show that f of x comma y would be simply f of x times f of y. 



So just combine both and we will get that. So, that is the other definition of that is the 

definition of independence that we saw in equation 15. 
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Now, for the final part of this lecture; we talk about co-variance or correlation which is 

the most measure that is used in data analysis. So, if you are going to continue in data 

analysis then you should be really clear about the notion of correlation, what it does? 

What was it originally devised for? And, how is it defined? Right; the basis for the 

definition of correlation is co-variance. So, we have talked about independence earlier. 

Independence rules out any from of relation between x and y. And, we measure 

theoretically at least we say that, we measure that by looking at the joint density and the 

difference of that from the product of the marginal densities. If the difference is 0, then 

they are independent; if the difference is not 0, then there is some dependence. So, the 

question is, what form of dependence exists between for example, height and weight of 

an individual or in the examples that we discussed the highway mileage and the engine 

capacity? So, so many other examples and so on. 

In this course and in general, we are interested at least to begin with linear dependence; 

is there a linear relation between two random variables. The advantage is, if there is a 



linear relation then I can build linear models and the math associated with the estimation 

of linear models I so easy compared to the math associated with estimation of non-linear 

models. So, the entire modeling or the regression literature is very rich for linear models 

therefore. A co-variance is a measure of the linear dependence between two random 

variables, x and y. You may not prove that, but will discuss that a bit in detail. First, the 

definition of co-variance; it is now the second order central movement of the joint PDF, 

earlier we talked of variance and in fact, you can see from the definition in 17 for the co-

variance; if i set y equals x, then it simplifies to the definition of variance and you can 

see it is a double integral, again minus infinity and plus infinity are only symbolic, they 

are the respective extreme values for x and y. And, mu x and mu y are the means 

obtained from marginal densities of x and y, respectively. Alternatively, you could write 

if you do not like those double integrals in equation 17, you could write sigma x y as 

expectation of x y minus expectation of x times expectation of y. Now, this is very nice 

resemblance between this and the expression that i spoke earlier in terms of PDF’s let me 

point that out. 
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Well, introducing co-variance, that independence theoretically can be thought of as a 

difference between f of x comma y minus f of x times f of y; if this is 0, so let us say that 



there is gamma measure which does this, let us just (Refer Time: 55:38) purposes of 

discussion, this is not really used in practice. On the other hand, looks at the difference 

between expectation of the product and the product of expectations and we say that two 

variables have a 0 co-variance when sigma XY is 0 that is when expectation of X times Y 

is a same as product of expectations. Look at the resemblance of this, they are not 

identical because here you are looking at a product this is just a joint PDF, but I am just 

trying to point out the similarities between these 2 expressions. If this is the case, then X 

and Y are not linearly related. If this is the case, then X and Y are not related at all; 

obviously, this is a much stronger condition compare to this. But in practice since we are 

varied about linear dependency we worked with this, so this is of course, theory in 

practice will have to use estimators for co-variance and see if that estimate is very small 

and subject to hypothesis test that is exactly what we are going to do in hypothesis 

testing. I am going to estimate sigma and I get sigma hat in fact, and then conduct the 

hypothesis test whether of, whether the true sigma is 0, again say alternative sigma is not 

equal to 0. 

Now, there is a problem with this kind of hypothesis test bit primarily, because if you 

look at the definition of sigma it depends on the units of X and Y that is the main 

problem, right. And, second problem is, I do not know what is high sigma, low sigma 

and so on. But, we will not worry about so much as much as it is dependence on the units 

and it is with that purpose that, normally one works with correlation which is a 

normalized co-variance.  
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So row XY is a normalized co-variance which address 2 issues in one shot. One, that 

now this has become unit independent of X and Y; so if you look at temperature and 

pressure, whatever units you use for temperature and pressure the correlation comes out 

to be the same value whereas, sigma would work out to be a different value depending 

on the units. Moreover, you can show that correlation is bounded above by unity in 

magnitude. So, the maximum possible value for correlation, magnitude of correlation is 

unity. And then, with this correlation; I know when sigma is 0, row is 0. So, conducting a 

hypothesis test on sigma 0, can be replaced with row being 0 and alternate hypothesis 

being row naught equal to 0, that is exactly the kind of hypothesis test that we are going 

to study later on, alright. And, we will talk about a bit more about this correlation; what 

does equality, what does it mean when correlation becomes equal to 1. 



(Refer Slide Time: 59:12) 

 
 

We just spoke of this correlation as a normalized measure. 

(Refer Slide Time: 59:15). 

 
 



And, correlation enjoys all the properties that the co-variance satisfies. In other words, if 

the co-variance is a measure of linear dependence, correlation is also a measure of linear 

dependence and is inequality, that correlation is bounded above in magnitude by unity 

can be proved by Chebyshev’s inequality; again the proof is available quite widely. 
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And in particular, we are interested in asking, what does correlation hitting a value of 

one mean? Correlation, when it takes a value of 0 we know X and Y are not linearly 

dependent which means, some non-linear dependence may exists. So, then one has to 

conduct tests of non-linear independence, will not worry about that. The fact is when 

correlation hits a value of unity in magnitude, then this is only possible when Y and X 

are linearly related, that is, this is a both necessary and sufficient condition. I am only 

showing one part of it here for your convenience, that is if Y is related linearly or affine 

way alpha X plus beta 2 X then, correlation is 1. Of course, without loss of generality for 

simplicity sake will assume beta to be 0. So, assume Y is alpha X and then you work out 

the expectation we have already seen if Y is alpha X, mu Y is alpha mu X, sigma square 

Y is alpha square, sigma square Y. This is something that we have seen earlier. So, we are 

just using a known result and plugging in for row. The expectation of X comma y is 

alpha times expectation of X to the whole square minus, sorry, it should be expectation X 



square minus expectation of X whole square, divided by the product of sigma X times 

alpha times root X but positive alpha because we know that sigma Y is the positive 

square root of the variance of Y. So, when you work out all of that, you get row to be 

plus or minus 1 depending on the sign of alpha. So, the magnitude works out to be 1. Of 

course, I have only shown that if Y is alpha X or alpha X plus beta then row is 1 but, you 

can show the other way round also, row equals 1 implies that Y is alpha X plus beta. So, 

this is a fundamental result in data analysis because it tells you that when correlation hits 

a value of 1 or estimates are very high, very close to 1 then a linear model will do a very 

good job of predicting Y given X; that means, you can live with the linear model as far as 

prediction of Y is concerned using X. 

If correlation values are low then what does it mean? Well, what it means is that there is 

a deviation from the linearity assumption and that deviation could be presences of noise, 

presences of non-linearity and so on, we do not discuss that at this movement. This is 

just to introduce a review, sorry, review concepts of correlation. And, we have just said 

that two variables are uncorrelated, if we is to retreat, if the correlation is 0 or 

expectation of XY is the same as product of expectations. 
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But, this is a weaker requirement compare to independence. 
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What this means is, independence implies uncorrelatedness, but uncorrelatedness does 

not imply necessarily imply independence. Now, the result is that, if X and Y follow a 

Gaussian distribution that is a bivariate Gaussian distribution. 
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The bivariate Gaussian distribution has a different expression from what we generally 

think of is an individual Gaussian, there is similarity but they are a bit different and I will 

just write that for you.  
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So, the bivariate Gaussian distribution; if two random variable x and y have a joint 

Gaussian distribution their phi times determinant of sigma, I will tell you what is this 

sigma; square root of a determinant of sigma times exponential. Let us say, this there is a 

vector X; I am going to tell you what is that vector X and this is a vector mean, transpose 

sigma inverse times x minus mu x and there is half here. So, what is this sigma and what 

is this X? First, let me write what X is for you. X is nothing but the vector of random 

variable X and Y or you may thing of this as Z, if you do not like X. So, Z is as a vector 

of random variables X and Y and sigma is the variance co-variance matrix that normally 

one sees in the vector random variable case. So, it has the variance of the individual 

random variables along with a diagram and the co-variance on the off diagonal of the 

matrix.  

So, now, this is a symmetric positive definite matrix. It is symmetric because sigma XY 

is same as YX, co-variance is insensitive to the ordering of the subscripts that means, it 

does not know whether X causes Y or Y causes X; it simply looks at the dependence 

between X and Y; therefore, it is a symmetric matrix and further it is positive definite. 

So, you can guarantee therefore sigma inverse exist. That means, it is determinant is not 

0 unless sigma square X or sigma square Y is 0 and some what, we will rule out such 

pathological cases. Then, if f of x comma y is this then X and Y are say, this of course is 

a determinant, then we say x and y have a joint Gaussian distribution. Now, a settle point 

is if X and Y are individually Gaussian distributed, it does not necessarily mean that joint 

distribution is also Gaussian; examples can be given, but this is just a point for your 

remembrance. 
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So, now when that is the case when X and Y have a joint Gaussian distribution and they 

are independent; and they are uncorrelated. Then, you can show that they are also 

independent; that is what happens when X and Y are uncorrelated, the variance co-

variance matrix that big sigma that we have written on the board, is a diagonal matrix; 

that means, sigma XY is 0, in which case it becomes a diagonal matrix, right. Now, you 

can show that, if that is the case you can factorize f of X comma Y as f of X times f of Y 

and that means, X and Y are also independent but this is only true for the bivariate 

Gaussian distributed case. In fact, you can extend this to a multi-variate Gaussian 

distributed also. So, any set of random variables that have a joint Gaussian distribution 

and are uncorrelated that means, there is no linear relationship between them; then it also 

means there is no non-linear relation, absolutely, no relation between them at all and that 

is the specialty that you say about a Gaussian distribution. It does not apply to any other 

distribution necessarily. So, with that we come to the closure of the review of probability 

and statistics. To summaries what we have looked at is in concepts of probability. 
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We have looked at axioms of probability, then we learnt; what is a notion of a random 

variable, probability distribution function, density function, mass function and then we 

said it is hard to work with PDF in practices; therefore, we will work with the moments 

of the PDF, mean and variance which is, what we have we have seen also in the 

examples, is that average, variability this is what we spoke of; in none of the examples in 

hypothesis testing, that we looked at we tested the PDF, we talked about the PDF if you 

recall. And, that is the case also in reality.  

And then, we went on to learn or what are the interpretation of mean and variance in 

different context and finally, we looked at the bivariate case where we learnt that, for the 

bivariate case or even the multivariate case one has to work with the joint PDF. Again, 

the same story in the univariate case we said the PDF’s are hard to work with therefore, 

we went to the movements case. So, in the bivariate case from the joint PDF we straight 

away went to the second order movement, which is co-variance and learnt that the co-

variance or correlation, which is a normalized measure, is a measure of linear 

dependence; is a very good measure of linear dependence because when it hits a value of 

unity that is the correlation, when it hits the value of unity then there is a perfect linear 

relationship between those two variables.  



Any deviation from that would mean that there is something else in Y which X cannot 

linearly explain, that something else in Y could be noise and or some non-linear function 

of X and finally, we also talked about independence which is a measure of lakh of any 

relation ruling out all forms of dependence between Y and X. But, we will not worry 

about that any more. In this course as far as testing is concerned, however the notion of 

independence is very important because in the next lecture when we talk of what is know 

as the random sample and there we would talk of the joint PDF of the observations that 

we have obtained and a random sample would mean that the outcome of the first 

observation will not affect the outcome of any other observation. So, those n observation 

that we collect in random sample are going to be independent and with this, with that 

idea we have reviewed the notion of independence early on.  

So, that is it. There is r tutorial that will also put up, go through the r tutorial and then as 

far as the theory, the lecture are concerned we will get back again with the concepts of, 

what are known as statistics and sampling distribution, where we will talk of sample 

mean, sample variance, sample proportion and so on. And, sample correlation, alright, 

then.  

So, hope to see you again soon in the next lecture.  


