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Hello, and welcome to the penultimate lecture on Introduction to Statistical Hypothesis 

testing, where today we will look at hypothesis test involving correlation, and certain 

other factors such as Model parameters, and the Goodness of the model in linear 

regression. So, specifically, we look at test for correlation to begin with. 
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And then, also learn what are the hypothesis test in regression; with of course, 

illustrations in R. Now, when I say regression here, we are looking at linear regression, 

where one is fitting a linear model between 2 or more variables. Typically, 2 variables 

are involved: one that you predicting and the other that you are using for prediction. 

Now, the reason for including both these in the same umbrella is because as we have 

studied earlier, correlation is a measure of linear dependents; therefore, when we want to 

fit a linear model, it is generally wise to study the correlation between those 2 variables 

that you would like to model, and then, once the correlation estimate passes a test of 

significance, that is when we have determined statistically that there is a significant 

correlation between 2 variables, then we proceed to fitting a linear model. Many text 



books would perhaps present this in a different sequence; that is, talk about linear 

regression first, and then talk about correlation, but it is practical to discuss correlation 

first and then talk about linear regression. And, that is why we have sequenced it in this 

manner. Of course, as I said earlier, at each stage, we will show how to carry out this 

hypothesis test in R. 

So, let us begin with the estimation of correlation. 
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Now, if you recall from early lectures in this course, we have defined theoretically what 

is a correlation. Correlation is standardized covariance; therefore, estimation of 

correlation will first require estimation of covariance. We have earlier seen how to 

estimate variance, where we have talked about 2 different estimators: one which we 

called as s square n and the other which we called as s square n minus one; that is how 

we denote it. And the difference between those 2 was; while one was unbiased the other 

was biased, but then, the 1 which had one over n, which was more efficient than the 

estimator - the unbiased estimator - which had 1 over n minus 1 as the factor for 

estimation. Likewise, here, now covariance being a generalization of variance to 2 

variable case, we have at least 2 different base of estimating covariance. 

There are, in general, many different ways of estimating variance, but among the widely 

prevalent ones, there are 2 estimators for estimating covariance of which I am showing 

one of them, and this has 1 over n in front of the summation. Ideally speaking, this 1 over 



n, that is estimator that involves 1 over n; is a biased estimator; nevertheless, we still use 

this widely to estimate covariance of course, for several different reasons which we shall 

not go into at the moment, but regardless of whether you use a 1 over n or a 1 over n 

minus 1 or a 1 over n minus 2 the resulting estimate for correlation is not effected so 

long as you use the same estimator for estimating covariance and also estimating 

variance. Let me explain that briefly. 
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So, what we mean here is, here we are using an estimate; estimate of covariance, which 

has this expression, where x bar and y bar rare usual sample means. Now, from the 

expression given on the slide, an estimation of correlation is constructed in this fashion, 

and what I meant earlier was that whether you use a 1 over nor a 1 over n minus 2 or 1 

over n minus 1 it does not influence a correlation estimate so long as you use a same 

expression for estimating the standard deviations or the variances of x and y. That is, if 

so long as I estimate variance, example of x, in this fashion and likewise for y as well. Of 

course, here i run from 1 to n; i refer to the i'th observation. 

So, you can clearly see that once I take the square root of the variance of x and y, 

whatever factor that I am using here would cancel out in the numerator and denominator. 

As a result, you would see in many texts, this kind of an expression. Of course, all this 

summation run from i equals 1 to n. And, we shall also see these kinds of summation 

appearing later on in the optimal estimates of the parameters in linear regression. 



Definitely, as we have taught at the beginning of the lecture, there is a strong 

interconnection between correlation and linear regression. Therefore, you will see similar 

kind of summations or the terms appearing in linear regression not necessarily identical.  

So, now, this is the correlation estimate that we are going to work with, and naturally, 

like we asked for any other estimate, we would now try to set up a null hypothesis of the 

form, for example, rho is equal to rho naught; that is, the postulate being correlation 

being identical to a pre-specified or postulated value verses one of the alternative 

hypothesis, for example, rho naught equal to rho naught. The typical kind of test that we 

normally conduct for correlation, which are called significant test, is whether the 

observed correlation or the estimated correlation is significant or not, in which case rho 

naught is 0. In fact, this is true for any parameter estimate; whenever, we use a term 

significance test for some parameter, what we mean is that the true parameter is 0, and 

whether the observed or whether the observed parameter estimate is significant - 

statistically significant. 

Now, before we proceed to learn how to conduct this hypothesis test, clearly, we know 

by now. Hopefully, we are experts now in hypothesis testing. We know that to conduct 

hypothesis test like this, I need the sampling distribution of the so-called sample 

correlation, and the difference between the hypothesis test, sorry, the estimate that we 

have here verses let us say an estimate of mean is that this estimator or estimate is a non-

linear function of the observation. So, we say that this is a non-linear estimator of the 

parameter which is correlation. 
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Whereas, if you take sample mean, so if you take x bar, this is a linear estimator, and it 

was easy to derive the sampling distribution of x bar for instance using the central limit 

theorem, but here it is not so straight forward to derive the sampling distribution of 

correlation, given the distribution of x and y. Now, knowing this difficulty, many 

researches, of course, spent a lot of time, several decades ago and came up with the 

distribution properties of the sample correlation under some restricted conditions, and we 

will discuss those shortly, and then, proceed towards hypothesis test for correlation. 

There is also another point that I would just like to mention in passing, which is that 

covariance is symmetric; which means whether I write it as a sigma x y or sigma y x its 

one and the same, and likewise for correlation as well; ordering does not matter; we have 

already discussed this in the lecture on correlation. So, as we just discussed, the 

properties or the sampling distribution of the sample correlation coefficient is not easy to 

obtain. 
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So, the distribution properties have been arrived at or have been known under some 

restricted conditions; however, as an estimator, the sample correlation that we have on 

the board or on the slide is asymptotically unbiased. Now, we need this, in fact, it is also 

unbiased, not necessarily asymptotically, unbiased only, and consistent estimator. If you 

recall, unbiased would mean on the average the estimator gives you the truth, and 

consistent would mean that as a sample size grows large, the estimates converge to truth 

in a statistical sense or a probabilistic sense. So, having assured that that assurance is 

necessary for us to conduct hypothesis test or use this estimator to test correlations. 

Now, let us move on to the distributional property. When x and y have a joint Gaussian 

distribution or a bivariate Gaussian distribution, you should recall in one of the lectures 

we had written the expression for joint Gaussian distribution where we talked about the 

difference between correlation and independence. If you refer to that lecture, you will see 

the expression for a bivariant Gaussian distribution. When x and y have a bivariant 

Gaussian distribution, and when the sample size is large, and when the true correlation is 

0, so you can see that there are quite a few restrictions here. Of course, some of these are 

standard, you may argue, that even in the case of variance, we stated the sample 

distribution of variance under the normality assumption only, but the large sample 

assumption was not really necessary there, but further, we have now, two different 

scenarios depending on what the true correlation is. If the true correlation is zero, of 

course, we do not know that, but what this means is if I am performing a hypothesis test 



of the form rho equals 0, then I should use this sampling distribution. If I am performing 

hypothesis of the form rho naught equal to 0, then I may have to use a different sampling 

distribution 

So, let us look at a first case when the true correlation is 0, then under the last sample 

assumption a nice result falls out, which is that the sample correlation follows a Gaussian 

distribution with mean 0 that is it is unbiased, because that is a truth, and variance 1 over 

n; that means, it has standard error of 1 over root n where n is the usual sample size. 

However, when the sample size is large, the sampling distribution of rho hat deviates 

from Gaussianity and instead follows a t-distribution with n minus 2 degrees of freedom. 

This n minus 2 degrees of freedom comes about because we have used 2 degrees of 

freedom in estimating the sample means, x bar and y bar you; can think of it that way. 

So, depending on whether your sample size is small or large you can use 1 of these 

distributions. In fact, if you try to use a small sample expression for large sample case, 

you would not be making much of an error, because we know that the t-distribution tends 

to a Gaussian as n become large, and n minus 2 tends to n. So, that is not an issue, but on 

the other hand, if you were to use a large sample expression for the distribution, for small 

sample size, there is a big scope for making an error. So, just be careful. 

Now, moving onto the case of the true correlation being not 0, again we wouldn't know 

that, but when you are performing hypothesis test of rho naught equals to 0, 1 has to 

work with a sampling distribution not for the correlation, but for a transformed 

correlation. In fact, it turns out that this was a tough problem to crack, but finally, Fisher 

came up this idea of working with a transformed coefficient, and showed that this 

transformation given equation 4, half in of 1 plus rho hat or 1 minus rho hat follows. 

Now, this transformation or transformed coefficient follows a Gaussian distribution with 

mean mu f and variance sigma square f; the expression for mu f and sigma square f are 

given. Here the variance expression is 1 over n minus 3. I would not go into the details of 

this derivation; you can find in good rigorous statistical text as a derivation of this or 

refer to, of course, Fisher’s original paper.  

So, the point is or the summary is when the true correlation is not equal to 0 the Fisher’s 

transformed coefficient follows an approximately Gaussian distribution. This is only true 

for the large sample case. Of course, you would not be again making big error by using 

this even when the true correlation is 0, but then, when a simple result exist for the large 



sample case why would you want work with a transformed coefficient. Therefore, all test 

of significance for correlation would either use this small expression in equation 3, sorry, 

small sample equation 3 or the large sample expression as the case may be. But when 

you are testing for the true correlation being something of rho naught equal to 0 like 0.1 

or minus 0.2 and so on, then you would want to use expressions in 4 and 5. 

Now, having said that, typically what is of interest is the first one that is a significance 

test; that is that the true correlation is 0. If it is found that the null hypothesis rho equal 0 

has to be rejected, then one fits a linear model, and then one is interested more in the 

goodness of the model fits and so on. It is, of course, there are situations in which you 

may postulate that the true correlation is point one and point two and so on, but relatively 

those are rare compare to the significance test for correlation; something to keep in mind. 

Alright, let us look at example now, and see also how we can do this in R. 
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This is an example that we discussed in motivating lecture. Recall that there was a 

widespread belief, that there is a relation between the cranial circumference - that is 

circumference of the head here and the finger length. This kind of belief was held for a 

few centuries, and now, we want to see if there is a linear relation between the cranial 

circumference and finger length. So, for this purpose what we would do is we would 

randomly select a few individuals, record their cranial circumference and finger length, 

and then determine the correlation between these 2 parameters, because we are interested 



in linear relation; to test for non-linear relations requires test for independence, but that is 

beyond the scope of this course. Let us now pull up the data for the cranial circumference 

and finger length, and compute the correlation coefficient. Let us see if this belief 

actually holds any (Refer Time: 18:10).  
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For this what you do is, you use the routines cor and cor dot test. Of course, you can 

straight away use cor dot test which implements the test for significance using the small 

sample expression that I gave earlier. If you only want to compute the correlation 

coefficient, of course, you can then use cor dot so that data is again contained in data file 

that we will upload on the web, and you can also work along with me. 
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Let us now turn to R; make sure we are in the working directory. So, this is the date. 

Some of these data sets, we have worked with earlier. The one that is of interest to us is 

that, we need to change the working directory here, and we have changed working 

directory to the file (Refer Time: 19:42) location. Now, we can load the data file. The 

name of the file is cran underscore finlen dot r data. And I am going to load that, which 

will load a variable called cranfing; it is a list variable and it has these attributes. And 

attributes of interest to us are the cranial circumference and the finger length. Of course, 

a good idea would be to plot the data points; draw scatter plots of the finger length verses 

the cranial circumference (Refer Time: 20:49). So, this is how the plot looks like. And 

what we are postulating is that there is a linear relationship; that is what is the 

equivalence of saying that I would like to see if there is a non-zero correlation. We are 

not so much worried about whether the correlation is positive or negative; we just want 

to know if there exists a significance correlation between these 2 variables. Of course, 

one can just to make things simple we can assign xcranfing instead of typing all the time 

these parameters. We can assign the cranial circumference to x and likewise the finger 

length to y. 
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So, now, we can ask for correlation between x and y. And it turns out to be 0.2157 and so 

on. Now, of course, this is an estimate and we know from our prior experiences, that the 

face value of the estimate does not necessarily tell us anything about the truth, and that is 

why we turn to the hypothesis test. So, let us now ask cor dot test the on the result of this 

hypothesis test. So, on the top you see that it displays Pearson’s product moment 

correlation. In fact, the correlation that we are working with is called Pearson’s 

correlation. There are two other forms of correlation that are widely used: Kendal’s 

correlation and Spearman's correlation; we do not discuss those correlation measures 

here; you can refer to any standard statistical test.  

So, it says data that has been used this x and y, and it reports the t statistic, the degrees of 

freedom. Notice, that we have 16 data points, and from our previous expression, we said 

the correlation estimate for the small case under the bivariate Gaussian assumption, we 

do not know if that is true, but let us assume that the data falls out of a bivariate Gaussian 

distribution. Then, in that case, the statistic has n minus 2 degrees of freedom, and that is 

why the degrees of freedom is 14. And one can either use the critical value approach or 

the p value approach; let us take the p value approach; it is lot easier; we know that when 

the p value is low, lower than the significance level, the significance level that we have 

used in the standard thing is 0.05 as usual, and when the p value is less than alpha, but 

here it is a two-sided test. So, you will have alpha by 2 to the left and right, but overall 

the p value if it is less than alpha, then the null hypothesis must go (Refer Time: 23:53). 



Here, the p value is greater than alpha. Of course, I can say much greater, but it does not 

make any difference, as the moment p value is greater than alpha, I have to; I fail to 

reject the null hypothesis, and therefore, the null hypothesis that the true correlation is 0 

fails to be rejected, which means most likely the truth is that the true correlation is 0. 

Of course, we will see this in a different way when we fit a linear model. Suppose, I did 

not perform a test of correlation, and instead, I went ahead and fit a linear model using 

standard least square method, then I should be able to see the same thing. That is even 

the hypothesis test in linear regression that I conduct on model parameters or the 

goodness of model should reveal the same thing that – look, you should not have fit a 

model because the true correlation is 0; there is no evidence to believe that a linear 

model will do a good job. And then, of course, you also have the confidence intervals 

here, for the correlation parameter. Now, again, these conference intervals are derived in 

the same way as we derived for the sample mean, ratio of variances, proportions and so 

on. You can start with a distribution; write a probabilistic interval for the correlation 

estimate, and then, from there derive the expression for the correlation coefficient, that is 

the conference interval for the correlation coefficient. If you look at the confidence 

interval, it includes 0 which is one of which is postulated value and therefore, the null 

hypothesis cannot be rejected. On the other hand, if you look at the correlation 

coefficient for another data set, that we will look at shortly in the context of linear 

regression, which is the data set that we talked about in the motivation lecture, the 

highway mileage verses engine capacity - in that case, the conference interval would not 

include a 0. 
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So, let us do that in a minute here. Let me load the data here which is containing in mile 

underscore eng dot r data. If you do that, and conduct a correlation testing now the 

variable is x data, this is also list variable, and we want to compute the correlation 

between the engine capacity and the highway mileage. I will explain these variable 

names at later stage, but let us, for the sake of the illustration compute the, perform the 

test on these 2 variables here - highway mileage variable 2 and the engine capacity, in 

fact. It does not matter because it symmetric, nevertheless, we want to be sticking to the 

conventions here. Now, when we perform this kind of a correlation here, something 

interesting comes up. Of course, there are certain defaults that we have used in this 

correlation dot test; for example, we assumed the significance level to be 0.05, we have 

assumed that the alternate hypothesis is of two-sided type and so on; that is what we are 

interested in always in signified test. 

Now, the null hypothesis, again, for this case also is at the true correlation between the 

highway mileage and engine capacity is 0. You can either use the p value approach or the 

conference interval approach; both are telling us that the null hypothesis has to be 

rejected because the true value - postulated true value - which is 0 is not contained in a 

confidence interval. In fact, you can see that both the bounds are actually negative 

indicating a negative correlation. Of course, if you want to now test for negative 

correlation, you will have to go and change the alternative which I will do at a later 

stage. In fact, the linear regression will tell us that there is a negative correlation between 



these two variables. You can also look at the p value, it is very small, in fact because it is 

smaller than alpha, and therefore, once again, the null hypothesis to be rejected. So, this 

is just a conformation of what we had observed using the confidence interval. 

Now these 2 examples, hopefully, have given you a fair idea of how to conduct a 

correlation test in R, and of course, the theory behind it. In the next part of this lecture 

we will talk about linear regression a bit more in detail and look at the various tests that 

are involved in standard linear regression. 

 


