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Welcome back to the lectures on Introduction to Statistical Hypothesis Testing. Until 

now we have that is in this unit, we have looked at the basics of hypothesis testing and 

we have also learned how to test for means under different conditions both for a single 

population and two populations. In this lecture, what we are going to focus on is 

hypothesis testing on of variance and proportions; by variance, we mean variability. 

Again here, as before we would be looking at the single population and the two-

population case that is the one sample test and the two-sample test. 
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To be a specific, we will begin with one sample test for variance and then move on to 

two-sample test for ratio of variability; followed by one sample test for proportion and 

the two-sample test for difference in proportion. So, you see that when we want to 

compare variability, we are looking at ratios; whereas, when we are looking at comparing 

proportions, we are looking at differences. So, you may want to think has to why we do 

not look at either difference in variability as a parameter to be tested or the ratio of 

proportions as a parameter to be tested. After all we want to compare and comparison 

can be done either by ratio or difference, but there is some specific reason as to why we 

do this and think about it and see if you can answer these questions. And as usual as in 

the previous lecture, I will show you how to conduct this test in R. 
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Now, once again before we proceed through this lecture, it may be useful for you to have 

the lecture on the sampling distributions handy with you, so that you can quickly look up 

the distribution of the test statistics that we are going to use in each of these cases. Now 

we begin with the one sample test for variance the goal is to test for the variability of a 

normal population, under the assumption of random sample. So, we have data coming 

from a Gaussian distribution and as usual we assume random sample. And we have the 

null as per the test; the null is sigma square is equal to a postulated value. And the 

alternative hypothesis is one of the three possibilities. The test statistics as we know 

earlier is this normalized sample variance sample variance is S square based on the n 

minus 1 in the denominator and the normalized statistics is n minus 1 S square by sigma 

naught square. 

This normalized statistics as we know follows a chi square distribution with n minus 1 

degrees of freedom. But the main thing to remember is the big assumption that we are 

making that the data come from a normal population; otherwise this sampling 

distribution for the normalized statistic or the test statistic that we have C square is not 

necessarily chi square that is very important point to remember. And then, the critical 

region is as usual the three possibilities depending on the three corresponding alternative 

hypothesis that we have. And once again, we have the alpha determining the critical 



value which is alpha is nothing but your type I error. And you can use in order to conduct 

this one sample test for variance, there is a no built in routine in R, in the sense in the 

base package of R let may be more specific. However, they are exists a package called 

env stats environmental statistics essentially, env stats package that you can install which 

carries this var test routine, and which helps you conduct this one-sample test for 

variance. Otherwise, of course, you can always write a small script that will compute the 

test statistics from the data and compare it with the critical value. It is no big deal 

actually to write a small script. 
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Before we proceed with an example, it may be useful to go through this graphically 

illustration for this one sample test for variance. As we have just said and we have been 

discussing throughout this course, there are three possibilities for the alternative 

hypothesis. The difference that is the type the sigma square is not equal to the postulated 

value, which leads to the two-sided test and then sigma square being less than the 

postulated value leading to the lower-tail test and then you have the upper-tail test for the 

sigma square greater than the postulated value as the alternative hypothesis. As before 

that as we did in the case of testing of means, we have shaded the critical region in red, 

but the difference that you see between the case of testing of means and testing of 

variance is that now the PDF of the test statistic is not symmetric. 



As a result, particularly for the two-sided test case, one has to calculate the two critical 

values at the left and the right critical values separately. For the case of sample mean, we 

did not have done this because the sample mean has a Gaussian distribution and that is 

the main purpose of this illustration, but the rest of the application and the concepts 

remain the same. And there is a small thing that we should notice we have denoted chi 

square with the degrees of freedom indicated in appearing the subscript whereas in our 

lectures we have indicated the degrees of freedom in the parenthesis, but that is the 

minor notational difference that hopefully you should be able to live with. 

So, in the two-sided test, what is important is of course, the alpha that is the type of error 

is distributed symmetrically to the left and right side of the postulated value that does not 

change, so that is a point to remember. What we are saying is it is equally likely that the 

observed statistics may fall to the left or to the right of the postulated value, but which is 

also the case we remains, but what is important is because of the nature of the chi square 

distribution, the critical value or the quantiles that you are going to calculate have to be 

calculated separately. Of course, you can use the qchisq routine in R with the 

specification of alpha appropriate quantile. In this case, if you are going to compute the 

left critical value you are going to specify alpha by 2, because that is what the qchisq 

expects for the probability and with the appropriate degrees of freedom, which is n minus 

1 that is all to it, but otherwise the rest of the story remains the same. 
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Let us now go through two quick examples; one is the example from our motivating 

lecture on the automated filling machine, where we were interested in testing the 

variability of the fill volume. There is a filling machine that fillings bottles and it is a fact 

that there is going to be variability in the volume that of the liquid being filled in the 

bottle, but we want this variability to be really low. And the filling machine is acceptable 

if the variability is less than 0.01. So, if as an end user I may say that I would like the 

variability to be not less than 0.01 or I would like to test for variability being greater than 

0.01. If the null hypothesis is rejected then that would mean that I would reject also this 

automated filling machine meeting my requirements. 

So, what we do is we collect twenty bottles at random that are filled by this automated 

machine this is an example from the book by Montgomery and Runger, where the 

directly the variability that is the sample variance is reported which is reported as 0.0153, 

and now the null hypothesis is as expected sigma square 0.01 and the alternate 

hypothesis is that sigma square is greater than 0.01. So, we compute the test statistic 

which is n minus 1 times square by sigma naught square, we know all of these values 

and status test statistic works out to be 29.07. The critical value now remember this is a 

one-sided test, in fact, this is a upper-tail test and therefore, we can use qchisq to 

compute the critical value or you can look up a statistical table. 
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Let see how to do this in R that is how to compute the critical value. So, what we are 

looking at is qchisq, and remember, this is an upper-tail test, therefore the probability that 

I am looking at to be fed to qchisq is 1 minus alpha, because it is an upper-tail test, and 

alpha is 0.05. Therefore, I should ask for 0.95 that is the quantile correspond to this 

probability with degrees of freedom being 19, because I have twenty observations in the 

sample and that is a critical value for you which is what I have reported here 39.14. Now 

that it is, so we have the test statistic following to the left of the critical value that that is 

the extreme value that we are willing to tolerate if the null hypothesis is true for the test 

statistics is 39.14. Whereas the observed statistics is not as extreme as we are willing to 

tolerate, therefore we fail to reject the null hypothesis, very simple. In other words, we 

do say that there is not enough evidence to believe that the variability is greater than 0.1 

you can say so or essentially you do say that fine this automated filling machine does 

meet my requirements. 
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Let us move on now to the second example, which is got to do with the yield data that 

we discussed earlier in the hypothesis testing of means. Now, we are looking at the yield 

of this process A, and asking if the variability of the yield. Remember, there is a process, 

it could be reactor or it could be even an agricultural methodology where you are looking 

at crop yield, but in this case, this is a chemical reactor. And you keeping making same 

product across batches, what you are interested in knowing is if the variability across 

batches is a postulated value right. When we where testing for means we assumed that 

the variability is known that was necessary in that example because we wanted to work 

to such an example. But here now we are saying that I have data and I will estimate the 

variability and ask if whatever I have assumed to be correct holds or not. Therefore, now 

the null hypothesis is sigma square A is 1.5 squares that is 2.25 is the postulated 

variability. We have as before in the previous example that we worked out in mean k 

testing of means k we have 50 observations in the sample and the estimated variability is 

2.05. In fact, we have this yield data with us. 
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Let us actually go to R and ask so if you look at the environment here, we have this or 

the workspace in R studio. We have already the variables loaded. So, let us ask actually 

what is the yield? Variance of the process A which is contained in the first column of x 

yield, and you get this. What I have reported is a rounded off to the second decimal; this 

is the estimated variance all right, but you should check if this variance var routine in r 

does it use n minus 1 or n, you have to be careful. Because you have small samples here, 

I leave it to you whether it is going to use n minus 1 or n; let say we assume it uses n 

minus 1 for the sake of discussion. Now what we are asking that is that the postulated 

value is 2.25, whether I can treat this observed statistic as good as the postulated value 

given that I have 20 observations in my sample, alright. 

Now, what we can do is of course, you can compute the critical value this is a two-tailed 

test you can say or two-sided test, and now the type one error is distributed equally to the 

left of that and right of the postulated value. And I need now remember we said for a 

two-tail of variance, I need to compute the left and right critical values individually. So, 

let us compute the left and right critical values individually and then we will also see 

how to do all of these using the var test routine from the env stats package. So, in order 

to compute the left critical value, once again we use the q chi square. And now we supply 

0.025 as a probability, because it is alpha by 2 on the left hand side, which is the 



probability of making a type one error and degrees of freedom here is 49. So, this is the 

left critical value. And then to determine the right critical value is apply here 0.975, this 

now constitutes the acceptable region thirty one point something and seventy point 

something is our acceptable region, which is what I have reported here in the slide for 

you 31.6, and 70 point I just rounded it off to the first decimal. 

Now the question is whether the statistic falls within the acceptable region. We only 

computed the variance; we did not compute the test statistic. We can go back and 

compute the test statistic, and see if it agrees with what I have shown on the slide. So, 

what we shall do is we know that test statistics is n minus 1 times S square by the sigma 

square postulated value, therefore the test statistic is 49 times variance of the process a 

divided by 2.25 all right. So, this is a value that one obtains, and that is exactly the value 

that we have seen, and now it is straightforward to determine the outcome of the 

hypothesis test. The observed statistics falls within acceptable region, we do not say well 

within a acceptable region because does not matters as long as it belongs to the 

acceptable region, we do not reject the null hypothesis, and consequently we fail to reject 

the null hypothesis that alpha equals 0.05. 

One can also use the p value method, and the p value is calculated using the same 

procedure as we have done for the means. I leave it to calculate the p value, but I will 

show you how to use the var test routine from the env stats package to conduct this 

hypothesis test. Because, there is no built in routine in R to compute or the conduct the 

hypothesis test for one sample test for variance, and that is a reason we turn to this an 

env stats packages. 
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The env stats package is a user contributor package is does not come with the base 

installation of R, so one has to manually install it. And installation of user contributed 

packages in R especially through R studio is a breeze, all you have to do is go to 

packages and it will show you the list of the packages that have be installed already in 

your system. And if you want to install new packages you can actually go click on install 

and all you have to do is point to the repository, there are a number of links that also R 

studio will bring up in preferences. I have be pointed it out to a repository; there is all 

these repositories are all mirrored, there is a central repository and the central repository 

is mirrored worldwide. Therefore, you should not have an issue, you can point one that is 

a nearest to you or that is more reliable nearest does not necessarily mean reliable all the 

time. 

And once you said the repository perfectly then you can actually type the package that 

you want. At the moment, I do not have an internet connection; otherwise I would have 

shown a live demo. However, use type for example, env stats, and it would show you 

like this right and that is it. So, it will show you the package and then you make sure that 

you click on install dependencies and you installed the package, all the dependencies 

would be installed. What do you mean by dependencies; dependencies for this package 

to run whatever package you are installing it may need a few other packages or may not 



be if we do not know. So, when you say install dependencies, it automatically looks up 

all the other packages that have to be installed for this package of interest to run and that 

is it you are done. In this case, I have done already this exercise and the env stats 

package has been install, and all I have to do now is go back to the packages and then 

make sure that it is loaded. 
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So, when I just select the package, it automatically loads a package and then also shows; 

what are the routines that have the same name in other packages. So, what this means is 

when you install a new package there are going to be routines that share the same name 

as other routines in other packages, and therefore it would amount to essentially over 

loading. And it is says basically that these following objects are masked form package 

stats; for example, if you take predict or predict dot lm; these routines are also present in 

a stats package. What it says is these are also present in this env stats package, therefore, 

when you use predict or predict dot lm, then it would use the once from env stats 

package. If you want to go back to the stats one, you can either unload this package by 

going back to the package list and deselecting the package or there is another alternative 

to do it which will not discuss now that something that you should remember. Whenever 

you load a new package not installed, when you load a package, installation does not do 

much for you in terms of conflicting of routines, but when you load a particular library 



then a there is a possibility that you can have a conflict. And therefore, you should read 

this message carefully to know for yourself as to what packages are going to be in a kind 

of a conflict. 

Anyway there is also another package it says routine it says print dot default, which is in 

the base package of r that also has the same name for a routine in this env stats package 

and that makes a difference to the way things are printed on the screen perhaps or printed 

on the plot. And it is only printing on the screen, it is not plot dot default, sorry, 

therefore, it may make a difference in terms of how things are displayed on the screen 

things meaning the results of some running some routines, alright. 
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So, let us actually now get back to the var test routine in order to conduct the hypothesis 

test for variance. And if you have loaded nice thing about R studio is it will show you the 

matching routines. It showed me var test as a matching routine and the syntax is also 

shown here. All I have to do is supply the data and I am going to do that, and I need to 

specify the alternative. In this case, the alternative is two-sided which is the default, and 

significance level has to be specified and that is about it; we do not have to do much. 

Simply run this var test, and of course, what we need to specify sorry we need to specify 

the default value, so which is supplied through this sigma dot squared that is essentially 



we need to specify the postulated value. And it is asking for sigma dot squared that 

means, it is asking for sigma square naught. And in our example the sigma squared is 

2.25, there you go. 
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So, now, it reports in a very nice way. In fact, printing of the results that you see in my 

opinion is much more neatly formatted compare to what you see as a kind of a cluttered 

output that you get from t dot test or var dot test as I will show you that is the once that 

are in the base package. Here the authors have taken special efforts to ensure that the 

results are formatted in a nice way before they have displayed all right. So, the null 

hypothesis, it is a giving you the alternative hypothesis true variance is not equal 2 and 

the name of the test is a chi square test estimated parameters variance is 2.05 that is this 

is not variance actually this is your test, sorry this is the variability, but it is also going to 

also report the test statistic for you, sorry about that. So, the estimated parameter is what 

we have estimated earlier using the var routine, and the data of course, that you are 

supplied it is reporting. The test statistic is what exactly we have computed earlier 

degrees of freedom is 49. And the p-value is computed for us, and the p-value is quite 

high when we know that the p-value quite high the interpretation is what I have observed 

is not more extreme than that I can tolerate. 



If the p value was low, what we mean by low is lower than alpha 0.05, then we have hit 

upon test statistic realization or a sample that is showing an extreme value more extreme 

than what I am willing to tolerate. In this case the p-value is high, therefore, we do not 

reject the null hypothesis. And finally, you also see the confidence intervals here LCL 

stands for lower confidence you can say bound upper confidence bound here; lower 

confidence level or upper confidence level as you want to think. And the interpretation of 

this confidence interval is essentially the same as that we had in the testing of means 

case. This is the two-sided test, this is a 95 percent confidence interval because alpha is 

0.05; what this means is the true variability is likely well is going to be in this region 

spanned by LCL and UCL values with a 95 percent confidence; we do not say 95 percent 

probability because the truth is a deterministic quantity. So, we say that from the random 

sample I have constructed what is known as an interval estimate for the truth and I am 95 

percent confident; that means, there are 5 percent there is 5 percent chance that the truth 

can reside outside this interval; that means, I would have missed the true - the capturing 

the truth. 

And as I had explained in the testing of means case, the way to use this confidence 

region for hypothesis testing is in the two-sided test for instance is to see if the postulated 

value false within this interval. If it does then that postulated value is also a likely truth 

and therefore, there is we do not reject the null hypothesis or we say we do not have 

enough evidence to reject the null hypothesis. At the truth fallen outside this or this 

interval then we would have rejected the null hypothesis, and that would have shown up 

in your p-value that would have also shown up in your critical values. Everywhere the 

results would be consistent. In essence, we have been learning three different ways of 

conducting the hypothesis test; one using the critical value method, other using the p-

value method, and the third is the using the confidence interval method. 

And as I mentioned earlier, we will know the technicalities of how to construct a 

confidence interval what is the meaning of a confidence interval in the following lecture, 

very good. So, now, we are sure that at least all the three give me the same result. It is a 

good way of corroborating our results; sometimes we may make an error in reading the 

numbers. Therefore, it is good to go through all these three and check if all the 3 

different ways of testing the hypothesis, give me the same answer. In this case, I fail to 



reject the null hypothesis. 
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So, let us now proceed to the next case, which is the case of two-sample test for variance. 

Again the story is the same, similar as we had before; we are going to compare variances 

of two normal populations; that means, populations following a Gaussian distribution, 

but we are going to test for ratios. And the null is as usual sigma one square equals sigma 

two square and the alternatives is one of the three possibilities. Of course, there is a big 

assumption here and I just forgot to mention that which is that the population that we are 

comparing at mutually independent like the once that these the same assumption like the 

one that we made for comparing means. In fact, in the mean comparison, we had also 

this case of pair test where the populations were not independent, but before that we had 

discussed for the difference in means as a parameter to compare the means of two 

populations. There also we are assuming that the populations are independent, alright. 

So, with this assumption, with these null hypotheses now and the alternative hypothesis 

determine by the application, the test statistic is now the ratio of the sample variances; 

and this ratio of sample variances is known to follow F distribution when the null 

hypothesis is true. Let me give you a brief background on that may be a minute or so, as 

to why this follows an F distribution. 
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So, quickly going to the theory of a ratio of variables that follow a chi square 

distribution; from the theory of probability distribution, we can say that if I have 2 

variables w chi square distribution. Let say I have 2 variables V and W have a chi square 

distribution each with let us say sum N 1 and N 2 degrees of freedom respectively. In 

other words, to be more specific say V has a chi square distribution with N 1 degrees of 

freedom, and W also has a chi square distribution with N 2 degrees of freedom. When I 

have a set of two random variables such as these then the ratio of W over N 2 and V over 

N 1 this ratio let say define this by F follows an F distribution with N 2 comma N 1 

degrees of freedom. What we mean by again degrees of freedom here is that the 

numerator contributes to the randomness enough the denominator also contributes to the 

randomness enough. So, you have two different dimensions itself from where the 

variability of through of F can be affected; and in each dimension, you have this many 

degrees of freedom N 2 and N 1. 

Now, how is this related to what we use in the ratio of variances? Well, we know that 

when I have samples drawn from Gaussian population and I compute the sample 

variance. Let us say I have a random sample drawn from a Gaussian population, let say 

from population 1 where this is assume that this random sample contains N 1 

observations then this statistic N 1 minus 1 times S 1 square over sigma 1 square has a 



chi square distribution with N 1 minus 1 degrees of freedom. May be to keep things 

consistent we could also change here N 1 N 2 to N 1, it is just a notational thing, so that 

you can view more comfortable with what we are going to do next all right. So, we know 

this already, but N 1 minus 1 times S 1 square or sigma 1 square has a chi square 

distribution with N 1 minus 1 degrees of freedom where S 1 square is our sample 

variance with the N 1 minus 1 in the denominator or a divisor it is an unbiased estimator 

of the variable variance of X 1, which is sigma 1 square, alright. Likewise, we have for 

the second population N 2 minus 1 S 2 square by sigma 2 square following a chi square 

distribution with N 2 minus 1 degrees of freedom. Now of course, what you have to 

remember is this results is to assuming that one that the population the respective 

population follow Gaussian distribution; and two, that you have obtained a random 

sample; only under this 2 assumptions this is right. 

Now, this fits in very nicely here what I want to do is, I want to compare the variances; 

one way of comparison is ratio, other way of comparison is different as you done in the 

means, but this results we know already, therefore, we would like to exploit this result. 

Here it says if W has a chi square distribution with N 1 degrees of freedom then W over 

N 1 likewise over v over N 2 follows an F distribution. Now, all I have to do is think of 

this as W and think of this as V, alright. 
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So, then what do I have here, if I were to construct a statistic with W over N 1 over V 

over N 2 and call that as F then we know W is this n 1 minus 1 times S 1 square or sigma 

1 square and therefore, sorry n 1 minus 1 here, because n 1, but we know that N 1 is n 1 

minus 1 and N 2 is n 2 minus 1 because W has n 1 minus 1 degrees of freedom and V has 

n 2 minus 1 degrees of freedom sorry for the confusion, but these are lower cases n's and 

these are upper cases N's that is all we have to keep in mind that is it. So, W over N 1 

would be W over n 1 minus 1 and that would be S 1 square over sigma 1 square likewise 

you would have S 2 square over sigma 2 square. Therefore, the F is actually S 1 square 

over S 2 square times sigma 2 square over sigma 1 square then why do we have only S 1 

square over S 2 square as the test statistic. 

Well, do you have an answer to that? Well, the answer to it is pretty straightforward; we 

are always testing conducting a hypothesis test assuming the null hypothesis to be true. 

So, when the null hypothesis is true, what is the null hypothesis, the null hypothesis is 

that h naught is that sigma 1 square equals sigma 2 square. And we conduct hypothesis 

test anchoring ourselves to this truth, and when this is the case then what we have is 

under this assumption, if this is true then this F becomes S 1 square over S 2 square. This 

has now F distribution with small n 1 minus 1 comma small n 2 minus 1 degrees of 

freedom that is a story behind using this F statistic for comparing variances. Hope now it 

is clear as to why we use the statistic, but you should always remember that this is the 

original result. And because the null hypothesis of equality type, we have F equals S 1 

square over S 2 square coming up as a test statistic. Imagine if the null hypothesis was 

not of the equality type was of the inequality type, then it would have been difficult for 

us to use this result because then the F value the test statistic becomes pretty complicate. 

So, once again we do realize that setting the null hypothesis always to be of equality type 

simplifies the way we conduct or hypothesis test, alright. 

So, getting back to now two-sample test, test a generic procedure, construct this test 

statistic as S 1 square or S 2 square under the null hypothesis is being true, the ratio that 

is this F S 1 square or S 2 square follows an F distribution with n 1 minus 1 and n 2 

minus 1 degrees of freedom and then you determine the critical region accordingly. Once 

again you can use Q F in R to determine the critical values of course, you have to specify 

there two parameters which are the degrees of freedom mu 1 and mu 2. 
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So, let us go through 3 examples to understand how these two-sample test for variability 

are conducted. The first one again is from our motivation lecture, where we want to 

compare the variability in the oxide layer thickness of a semiconductor wafer when I use 

two different mixtures of gases you may recall that we are discussed this example. So, 

what we have done is or the manufacturer has done is that has used 2 different gases 

mixture of gases for the environment when the oxide was a layers were being formed. 

And then about 16 of specimens from each of the scenarios were drawn randomly, and 

the variability was estimated. And, I have just taken this value from the book by 

Montgomery and Runger; the S 1 and S 2 are the estimated standard deviations they are 

not estimated variances. Both have the same sample size 16 specimens each and now our 

null hypothesis is clearly sigma 1 square equal sigma 2 square and alternative hypothesis 

is it is not. And the statistic works out to be 0.85, if you put through the number that is 

your S 1 square over S 2 square. 

And the boundaries are computed using your Q f or you can look up a table. Now 

remember alpha is 0.05 this is a two-tailed test therefore, I am going to look up the 

quantiles to the left and the right of the postulated value in the F distribution. The F 

distribution or the density function is an asymmetric one pretty much looks like the chi 

square one you can think of f has been the counter part for chi square as the T is been the 



counterpart for the Gaussian. Remember when we go from Gaussian to T, we say more 

or less t looks like a Gaussian, it is symmetric, but the shape is affected by the so called 

degrees of freedom there. Likewise here, when we move from chi square to F 

distribution, we have an additional dimension, therefore, we have two degrees of 

freedom and the F looks pretty much similar to chi square except that it is shape is 

influenced by both degrees of freedom compared to your chi square. Otherwise you 

know once you have understood that analogy it is fairly simple to work with. 

So, now you can either look up a table or you use Q F to determine these critical values. 

The nice thing about an F distribution is if when you are working a let say for with a 

two-sided test specifically the right critical value shares a relation with left critical value 

in that. For example, here the f that you wanted to compute that is a critical value that 

you wanted to compute to the right is computed by specifying the alpha which is 0.975 

not alpha, but 1 minus alpha by 2. You would specify that in your Q f and also feed the 

degrees of freedom this is equal to 1 over what you have computed of the left critical 

value. So, look there is a complimentary here, you want to compute Q f. 
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Let me show you an R, you want to compute here q f the probability being 0.975, and the 

degrees of freedom being 15 comma 5 this is the value that you get is a right critical 



value which is equal to let us actually say one over q 0.025 comma 15 comma 15 sorry q 

f. So, the values are the same right. What this means is with the f distribution things are 

easier then we what we thought so before because it is a complicated one by the way the 

f distribution does have an analytical expression that looks pretty intermediating, we do 

not need that at least when we are using the software or when we are looking at tables. 

So, what we have seen here is I just need to know one of the bounds and the other bound 

is already known which is nice all right. 

So, good, now we have the left and the right critical bounds. Here of course, we have 

0.35 and 2.86 so that is left critical value and the right critical value. Remember both chi 

square and f distributed variables are always non-negative; that means, the range of 

values at the random variable whether it has f distribution or a chi square distribution 

always runs from 0 to infinity. There is known the negative part of the real axis is 

excluded unlike in the Gaussian or the T distribution cases, very good. Now, we ask if 

the observed statistic false within the acceptable region and it does, and therefore, we fail 

to reject the null hypothesis. The observed statistic is 0.85, and what we have here is the 

bounds being 0.35 and 2.86. 

Now there may be come confusion here as to what is a left and what is a right by the 

notation that I have used here. Do not confuse this f subscript notation that I have used 

with the values that we given q f; we usually in q f we gave the complimentary 

probability, and therefore, you have to understand this 2.86 to be the right critical value, 

obviously, and 0.35 to be the left critical value. So, do not worry about that fortunately 

for us, one is the reverse of the reciprocal of the other good. 
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So, now, let us move to the second example, where now we are going to compare 

variability of yields again it is a same follow through example you have used in means 

also in the one-sample test for variability we have used this a example. Now, we have 2 

processes as we had in the case of comparison of means there we compared means now 

we are going to compare variability. Remember, the nice thing about comparing 

variability is I do not need to know the knowledge of the true means that is quite 

important to know. The variability now in the yields of two processes are identical is 

what we want to test; in other words that they are not identical you can say so. Therefore, 

the alternative hypothesis is that the variability’s are not identical or not equal. We can go 

to now where dot test routine which comes to the base package in stats and run through 

this example, then come back and see if you get the same numbers. 
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So, let us go back to R, clear the screen and then now we use the var dot test and supply 

the data for the 2 reactors that is the yields from 2 reactors. And now, we have to supply 

the postulated value that is the ratio we are saying that the ratio should be all to one that 

is what we are saying and that is our null hypothesis and the alternative is that it does 

not. So, it is a two-sided test and that is about it we do not have to specify anything else. 

You can look up here other options that are available, so ratio is that of the postulated 

value here we are saying it is equal. In many application, we want this a probably test 

that the variability in one process is twice the variability in the other for example, or 

some gamma times or k times the variability in the other one, in which case we have to 

specify what is that ratio. Here the ratio that we are testing for is one therefore, I do not 

have to specify, it is a default value alternative is two-sided conf dot level is our alpha, 

which is 0.05. So, I do not have to specify anything here. 

Let us look at the output of the var dot test. Now, let me point out here because we have 

loaded the n stats package the output has been formatted in the nice way for us had we 

not loaded that then the output would have been cluttered then the numbers would not 

change, but it is just the ease with which we can read the output is much better. Now, the 

null hypothesis is that the ratio of variances is one alternative hypothesis is it is not and 

the test name is that we are using an F test and estimated parameter is a just ratio of 



variances. 
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You can check cross check what you can do is, you can compute manually variance of 

the first column of x yield by the variance of the second column of x yield, it should give 

you the same value. And the test statistic works out to be this, value here, let see if that is 

what is reported in the slide for us yeah it is roughly rounded off to the second decimal 

0.27, very good. And then, we have here numerator and denominator degrees of freedom 

49 and the p-value is reported. Now you observe that the p-value is quite low. We do not 

really worry about how low it is we only ask if this p-value is lower than alpha or not. It 

is lower than alpha therefore, what is the decision, the decision is to reject the null 

hypothesis that means, we do say no, there is no enough evidence to believe that these 

two reactors or two processes give me the same variability; one has a lower variability 

than the other. Of course, then one has to ask which one a as the lower variability. So, I 

leave that you to conduct that hypothesis test; suppose you postulate that process a, a 

yields with lower variability then that process b then go ahead and formulate your null 

hypothesis of course, that is always a, but your alternative hypothesis and check if that 

alternative hypothesis is rejected or not. 

Now, we can also use a confidence interval way of testing this hypothesis. The lower and 



the upper confidence limits are given for us. And it does not contain the postulated value 

which is one, which means that there is a 95 percent there is a way chance that the truth 

is not 1, you can say so. Well that is a that is a statistically it is not a correct way of 

stating that let me put it in a different way; there is not enough evidence at least with 95 

percent confidence I can say that there is not enough evidence to believe that the ratio 

variances is one that is a more statistically appropriate way of stating the outcome of this 

results. All 3 therefore, now tell us, in fact, we have not computed the lower and upper 

bounds you can do that or I have given that in the slide for you. The lower and upper 

bounds are given and for the critical values and the observed statistic falls outside this 

acceptable region, therefore, we reject the null hypothesis. Again all the three point to the 

same result which means we are doing things correctly reject the null hypothesis at alpha 

equals 0.05. I leave it as a homework exercise for you to see which process yields me 

lower variability. The data is with you we are gone to post it any ways. So, you can play 

around with the data. 
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So, the final case that we have is testing for proportion again one-sample and two-sample 

test. This is the one sample test for proportion of success from a binomial population and 

assumption is that we have a random sample as usual and that the sample size is large. 

The sample size large assumption can be tested based on the sample size, which is n and 



the postulated probability. If this interval p naught plus or minus 3 times root p naught 

times one minus p naught by n includes 0 or 1 then you can say that the large sample 

assumption is violate. Where does this comes from, well, it comes from a confidence 

interval kind of construction we will not go into the details, but this the practically 

speaking what you should do is in order to use this test statistic that we have given here, 

first you should always check whether this interval contains 0 or 1. The basic idea if you 

recall from the sampling distribution is we are using an approximate result here the 

approximate result is that the z statistic that we have return here which is x minus n p 

naught by square root of n p naught times 1 minus p naught follows an approximate 

Gaussian distribution. 

When is that approximation true? Well, when n is large and also that the probabilities are 

not at the extreme values; extreme values meaning either not too low or not too high 

whether it is for a success or a failure it does not matter. If the probability of success is 

too low then the probability of failure is going to be too high because only 2 possibilities. 

So, it does not matter whether where these probability of success or failure, you should 

not be work having an extreme scenario there. When that this a case and the sample size 

is large, approximately z follows a Gaussian distribution, under this approximation only 

we are going to test this one sample proportion case. For a more detail test of proportions 

and so on your advice to look up the literature, this is very short course and hypothesis 

testing, therefore, we do not have the time to discuss further scenarios and discuss non 

parametric test and so on, alright. 

So, let us proceed now the critical region is as usual you use the normal distribution 

determine the critical values and or the acceptable region based on the specification of 

type I error and the alternate hypothesis. 
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Let us look at an example now - first example. Again this is from our motivation lecture; 

manufacturer claims a maximum of 5 percent of defective controllers, and random 

sample of 200 devices are drawn, from where 4 items have found to be defective. Now if 

the customer wishes to test that the proportion of defective items exceeds 0.05 the 

alternate hypothesis is that p is greater than 0.05 that is the postulated value or the value 

that is put forth by the manufacturer. Before we use the previous method remember we 

have to construct that interval and the construct the interval n in this case is 200, p 

naught is 0.05, we do not know if it is too small let us not think or make any judgments if 

0 or 1 appears in this interval. It is kind of an indication that the probability of proportion 

or the proportion that we want to test is way too low for this method to be used. Now, we 

have computed the confidence interval and it turns out that it does not include 0 or 1. 

Therefore, we can say that the sample is large enough and also that the postulated 

proportion is not at the extreme value. 

On the other hand if I had postulated a value of 0.005 that is the manufacturer had said 

that there are only 0.5 percent of defective controllers. And I want to use this test you 

will find out that with this sample size, it is not possible to test that because the 

confidence interval will include 0 that you can check, you can just go back here and 

calculate the confidence interval with n equals 200 and p naught equals 0.005. In this 



case with for this sample size this proportion is not extreme. So, you see what we call as 

extreme proportion is a relative think, it is relative to the sample size that you have that is 

very important to remember, good. So, now it allows us to use this method; of course, we 

would use an example as academician we are always notorious for that we will use 

examples that allows us to look at simple cases, but this a 10 hours course you are going 

to work with simple cases so as to convey the idea, alright. 

So, getting back to the problem here the observed statistic works out to be minus 1.95. 

So, here how do you calculate the observed statistic x is 4, n is 200, p naught is 0.05 or 

you can say you can use the other one the pi that you have is a estimated proportion 

which is 4 over 200, alright. And then you have a minus p naught there, p naught is a 

0.05. So, either way, you can compute your z statistic and it turns out to be minus 1.95 

and this is a one-sided test. What kind of a one-sided test, this is an upper tail test and 

therefore, we compute only one critical value which is to the right of the postulated 

value. And we have here, we know from you are previous experience at the critical value 

at alpha 0.05 is it should not actually 1.96 that is a mistake there. So, let us get back now 

the observed statistic is minus 1.95, as we calculate using this expression here x is 4 and 

n is 200, p naught is 0.05 or you can use the other expression here which as the pi unit 

and pi is 4 over 200 and p naught is 0.05. 
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Either way you will get the same value being minus 1.95, and the critical value now is 

1.645. Remember this is a one-sided, in fact an upper tail test. And therefore, the critical 

value is going to be on the right-side and we compute this using q nom of 0.95 because 

alpha is 0.05 and that works out roughly to be 1.645. And therefore, now the statistic is to 

the left of the extreme value, and therefore, we fail to the reject the null hypothesis in 

other words the manufacturer is safe. A manufacturer can claim that yes to the maximum 

possible proportion of defective controllers in his manufacturing is 5 percent, OK. 

Now, what you may want to do is ask if what would be the alternative hypothesis, if it is 

the manufacturer who is conducting this hypothesis test. As a customer have done it what 

would be the alternative hypothesis would this null hypothesis be still hold or still would 

it be rejected. And the other question that may be you want to look at is, what is the least 

value of x that is what happened is we have draw 200 devices randomly from the process 

and found that 4 items were defective. What could have been the least value; that means, 

you can say minimum value of defective items that could have resulted in a rejection of 

the null hypothesis; obviously, that has to be greater than four, correct; so, as to push the 

observed statistic to the right of the critical value which is 1.645. How many defective 

items in other words would we have tolerated in this sample of 200 and still not reject 

null hypothesis, something to think about.  

Of course, there are other question that you could ask what could have been the smallest 

sample size that could have rejected let the rejection of null hypothesis for example, So, 

there are so many question that one could ask not only in this hypothesis test, but also 

other hypothesis test. We will consolidate all or most of these questions in the last 

lecture, where we will ask what are the things that any hypothesis test is sensitive to. At 

the moment, we are only learning how to conduct a hypothesis test, alright. 
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So, let us now move to the second example, where we are looking at an exam type 

preference of students and the what we want to test is that the proportion of students 

preferring a close book exam format is 0.8. So, here we are not asking that more than 80 

percent are preferring or less than 80 percent are preferring, we just want to say test the 

hypothesis test that 80 percent of the students prefer close booking exam on a campus. 

So, now again I have taken this example from the book by Ogunnaike and from the data 

you can actually compute the proportion it turns out to be 0.75, the sample size is 100. 

Once again we do not know if the sample size is large or small and so on for the 

postulated proportion. So, we construct that interval and once again this interval does not 

include as 0 or 1; therefore, we say that the sample size is large enough for the postulated 

probability or proportion. 

And now, the alternative hypothesis as we are mentioned before is that the p is not equal 

to 0.8. The statistic works out to be minus 1.25 using the same formula that we are used 

before. The critical region here once again should have been one point yeah now the 

critical region is 1.96 because now we are looking at a two-sided test, right and the 

observed statistic falls within the acceptable region, acceptable region is minus 1.96 to 

plus 1.96. And therefore, we fail to reject the null hypothesis. Here also one can follow 

the p-value approach, one can use the confidence interval approach, but I leave it as an 



exercise for you to work out those approaches. Now of the final case of discussion for 

discussion this lecture is on concerned with the two-sample test for proportions. 
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So, what we want to do is test for differences in proportion from binomial populations, 

again very specifically we are saying binomial. And assumptions is that we have samples 

drawn randomly from the respective populations, and as usual by now you should be 

familiar with the procedure the test statistic is your standardized statistic approximately 

following a Gaussian distribution. Assuming that once again the sample size is large and 

as I have pointed out in the lecture on sampling distribution, to compute the denominator 

of z, you need the values of p 1 and p 2 which we do not know obviously, we have only 

postulated. So, what we do is we replace this p 1 and p 2 with the respective estimated 

values ok and that is it. And what we can additionally do is when we believe that both 

populations have the same proportion that is the postulated value is 0 for the difference 

in proportion, we can use a pooled proportion idea to estimate the denominator which is 

for p hat. 

So, we need this estimate for 2 things to compute the numerator which is pi 1 minus pi 2 

minus delta naught and in the denominator. So, there are 2 scenarios like we had in the 

comparison of means unequal variances, equal variances. When we had equal variability 



there we said we could use a pool estimator to estimate the variance; and when they are 

not equal, we will have to live with the individual estimates the same analogy extends 

here as well. The critical region as usual that is it. 
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So, let us look at an example and then conclude our lecture. This is the example again 

from the motivating lecture; in this case, it is a regional preferring for a soft drink called 

PEPSI. This is then example taken by from the book by Ogunnaike. It is not an 

advertisement for PEPSI, it is just an example concerned with it. So, what we want to 

test is that across two campuses, we have the same proportion of students preferring 

these particular soft drinks. So, 125 individuals from these two or student from these two 

different campuses were surveyed and asked for their preferences. And from the first 

campus 44 students preferred this soft drink; whereas from the second campus 26 

students prefer these preferences. Clearly, there is a difference you can say, the sample 

size is the same, you have 44 in one campus and 26 on the other campus. So, there is; 

obviously, glaring differences never the less it is useful to conduct a hypothesis test on 

whether this difference is actually significant or not because there is going to be 

variability that is a reason why we are doing all of these whether it is proportion, 

variance or mean testing whatever. It is all because of variability uncertainty that I cannot 

believe just on the phase value of it that this difference being 18 in this case to be 



considered significant. 

So, on the scale of variability that exist among this two campuses we want to ask if this 

difference of 18 individuals out of 125 preferring this soft drink is to be considered 

significant or not. So, we compute our pi 1, pi 2 and p hat works out to be 0.28, because 

we are testing that there is no difference between the proportions we can use the pooled 

estimator and compute the p and that is how we have computed p that is using x 1 plus x 

2 by n 1 plus n 2. X 1 is 44, x 2 is 26, so that works out to be 70, and then you have by 

250 right so that is what we have here. So, you get here p hat is 0.28. And the statistics 

works out to be 2.54, this is a two-sided test. Therefore, the critical of course, should be 

reported for both sides, but because the observed statistic as turned out to be a positive 

value I am only reporting the upper bound here. And the observed statistic is more 

extreme then what I am willing to accept when the null hypothesis is true. 

Therefore, I reject the null hypothesis it is most likely the null hypothesis is not correct 

that is what it means, under the circumstances again as with any hypothesis test. 

Therefore, we reject the null hypothesis and alpha it could 0.05. Now, once again you 

can go back and ask well with this data can i ask now which campus has larger 

proportion of students preferring this soft drink. Well intuitive you can say that it is the 

first campus that as a larger proportion, but you may want to conduct a hypothesis and 

check if that hypothesis holds. Of course, the null hypothesis always going to be p 1 

equals p 2, the alternate hypothesis going to be either p 1 greater p 2 or p 1 less than p 2 

depending on what you suspect to be the campus having a larger proportion of students 

preferring this soft drink, alright. 

So, with this we come to a close, but before I do that let me tell you, you may be 

wondering why I have not shown these kinds of test in R, why is it not done. Well first of 

all it is way too simple you do not have to do anything this is a normal normally 

distributed test statistic I do not have to go to R to use a utility. All I need is a calculated 

to compute the test statistic, but that is not the main reason, the main reason is the prop 

dot test, there exist a routine called prop dot test in the base package that can do the same 

similar kind of test for you. 
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So, you can look up the help on test of proportion which allows you to compare across 

populations, but this is more generic, and also uses what is known as the chi square test 

this is well known in the literature on test of proportion, where there is a z test that we 

have seen. But there is also something called a chi square test which is for a generic 

situation that is maybe you do not have the population following a or the sample size not 

being large or the test statistic not following a Gaussian distribution. We do not know for 

example, what distribution they underlying population has and so on. In those cases, you 

can use this test which is based on the chi square test, test statistic; this was proposed by 

Pearson. You can still use this for the example that we just discussed except that it works 

with the squared test statistic instead of the z variant that is the only difference. 

So, you are most welcome to use this for any other data for which we want to test the 

proportion, but remember that it is not using the same test statistic that we are using it is 

using a squared one. And you can go into the literature to learn; what is the difference 

between the z-test that we have discussed and the chi square test that is more widely 

used. The technical term that you will see is the z test corresponds to what is known as 

the parametric test where as the chi square test corresponds to what is known as the non 

parametric test and so on. But given the duration of this course, we do not have the 

luxury of discussing more of this related concept in detail; therefore, hopefully if an 



advance course is offered will discuss the differences and all the pertaining details. Else 

please go into the literature, take any standard test book on hypothesis testing even the 

book by Montgomery or you can this there so many resources on the web, go and check 

and read as to what is the difference between the chi square test and z-test. For this 

course, we will restrict over self only to the z-test and we will also evaluate in the 

examinations only questions based on the z-test on right, alright. 

So, now with that we come to a close of this lecture. 
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And now, I am sure you have seen a lot of different hypothesis test, and there is high 

probability that you may be in a confused state that you can work out more examples and 

get clarity. And of course, listen to this lecture probably more than once. The assignment 

problems will definitely help you in reinforcing this learning. And what we are going to 

do next is we are going to actually learn how to construct or high confidence intervals or 

how to conduct hypothesis test using confidence intervals. And then we will talk of 

hypothesis test in linear regression which is a short topic. And close this course with a 

discussion on what factors affect hypothesis test namely the sample size, the variability, 

the choice of alpha or the alternate hypothesis itself and so on; in particular, we shall 

focus on the effect of the sample size.  



Alright, then see you in the next lecture. 


