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In the last tutorial lecture, we have seen the basic idea of how to convert a partial 

differential equation into a set of algebraic equations by discretizing it at specific points 

for the case of triangular duct. We saw that for two cells - cells one and cells two. Now in 

today's lecture, we will do it systematically for the entire set of nine cells and then look 

at what kind of discretized equation we get and how we can solve this. 
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So, we are looking at the triangular flow through a duct of triangular cross section the 

flow is fully developed which enables us to look at just the triangular cross section. 
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And we have divided this into nine cells equilateral cells each of side point one meters 

and as part of the discretization we took a specific cell which has a structure like this for 

example, this is cell 7. And we identify the centroid of the cell, and then the midpoints of 

the three sides and then the three neighboring points. And at the mid points, we have the 

direction cosines the n x and n y at this point, and at this point, and this point. For 

example, on this space, the outward normal vector is like this. So, n x is positive and n y 

is negative. Based on the geometry that this is 60 degrees, we can say that n x is cosine 

30 and n y is minus sin 30. And although we put it as 30 here, the angle is actually to be 

counted from here, so it has to be like this. So, in that sense, we can see that this is cosine 

30 and here we have n x as negative and n y as negative. And here we have n y as 

positive and n x as 0. 

So, the basic information of the geometry in terms of what the vertices are, what the x 

and y coordinates of the vertices are, and what are the coordinates of the centroid, and 

what are the coordinates of the neighboring points, and what are the coordinates of the 

midpoints of each space, and what are the direction cosines needs to be ascertained for 

each cell. 
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So, once you have this, then you need to go into the estimation of gradients. So, for the 

estimation of gradients, we are following for the sake of convenience especially in terms 

of writing a program, we are following this particular convention that any cell we go in 

the counterclockwise direction. It is a triangular thing, so we can go keep on going round 

we need to have a starting point, so we are taking for this example the starting point as 

the horizontal line which is there for every cell, every cell has a horizontal side. 

So, we can take start with this go in the counterclockwise direction like this, and from 

here like this, and then from here like this. So, at this point, for cell 7, for example, the 

midpoint, I am starting and calling the midpoint of the horizontal cell as P the midpoint 

of the second cell as q, second side as q, and the midpoint of the third side of as r. So, we 

are going like this, like this, like this, so this is small p, this is small q and small r. It is at 

this small p, small q, small r, we need to evaluate the directional cosines, and we also 

need to evaluate the gradients. 

So, when we look at the gradient, we need to have for example, dou w by dou x at point 

p, so dou w by dou y at point, we do not need the dou w by dou y dou x at point p 

because n x is 0. So, you have only n y is nonzero and it is equals to minus 1. So, we 

need to evaluate dou w by dou y at point p. And this can be evaluated in terms of the 



 

 

immediate neighboring points at which we know the velocity. So, here we have w 7 is 

one of the points where we are written the velocity and w 9 is also there. So, we can 

write this as w 7 minus w 9 divided by y c 7 minus y c 9. where y c is the y coordinate of 

the centroid of cell 7 and y c 9 is the centroid y component of the centroid of the cell 9 

like this. 

Now, when we come to the second phase, and the midpoint small q here given in red 

here. Here, you have both n x and n y, so we need to evaluate both the dou w by dou x 

and dou w by dou y. So, here again we can write this as because there is a neighboring 

point 6 here, we can write this dou w by dou x at q as w 7 minus w 6 divided by x c 7 

minus x c 6. And dou w by dou y as again w 7 minus w 6 divided by y c 7 minus y c 6. 

Now if you look at the way that we are doing here in order to evaluate the gradient dou w 

by dou y, we are substituting we are writing this as delta w by delta y. And how are we 

defining delta, it is the difference between two points in which way we can write this as 

w 7 minus w 9 divided by y c 7 minus y c 9, or we can write it as w 9 minus w 7 divide 

by y c 9 minus y c 7. 

The numerical value does not change, but when we add up all the contribution of the 

fluxes which are coming from all the sides here it is better to have a consistent way of 

evaluating this gradient, and which is why I have put here, always you start with the cell 

node value as the point where you subtract from this the neighboring value. So, you have 

here w 7 minus w 9, and here you have w 7 minus w 6. And you change these things in 

such a way that you maintain the same order. Similarly, for the third side at midpoint r 

here which is denoted in a red color. Again, we need to have dou w by dou x at r, here we 

are writing as w 7 minus w eight divided by x c 7 minus x c 8. So, we do this then if we 

say what is the contribution to the coefficient of w 7 in the discretized equation we can 

just sum up all these things and the net contribution for 6, 8 and 9 will be negative, and 

they will be coming because of this. If you put it, if you evaluate for this point as 7 minus 

9, and for this point you put 6 minus 7 then you have to add this here and then subtract 

this here. So, to avoid that kind of confusion, we are defining estimating the gradient as 

the value of the node minus the value of the neighboring node, value of the node minus 

value of the neighboring node. Whether it is to the left side or the right side, it does not 

matter, it is always w 7 minus w 8 divide by x c 7 minus x c 8 and so on. 



 

 

If for example, we have a wall, suppose a b is a wall at that point we do not have a 

neighboring point like 8, but we have the boundary condition that at the midpoint r w 

equal to 0. So, in such a case, in order to get the gradient dou w by dou y at r, we write 

this as w 7 minus wall velocity which is 0 divided by x c 7 minus x m r, where x m is the 

x coordinate of the midpoint of the rth side. So, I could have put it as x r it is the same 

thing here. Similarly, dou w by dou y at this point here at r, where this is a wall can be 

estimated as w 7 minus 0 divided by y c 7 minus y m r. So, in this way, we can have a 

consistent way of estimating the gradients. And we also know from the geometry what 

the direction cosines on each space are. 
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And then we can go into making entire program for all the cells. So, here we have to be 

systematic, and I am illustrating the process in excel, so that we have a clear 

understanding of what information is being obtained from where. And once you have a 

clear understanding, then you can go into writing a computer program, so it is excel, we 

have to do calculations for 9 sets of a points. So, something like excel will actually 

eliminate the mistakes in the hand calculations that we might make when we are doing 

for so many cells, so that is the only thing; otherwise the preferred option would be to do 

hand calculations. So, here we are starting with this triangular cell here, we need 

information of pi, so I put this here. So, the cell length is 0.1 meters and height is sine 60 



 

 

times this, so that is that we get as 0.0866. And from the height, I can look at the centroid 

as 2 h by 3, and h by 3 distances; and I can look at also the midpoint and all these things 

become known here. And we can also find the area of this triangular cell as half height 

into lengths, so that is what we are doing here. 

So, we have the area of the cell and we have the basic information. And from this, we 

first of all we get all the coordinates; and here we have nine nodes 1, 2, 3 up to 9. And in 

this line, we are looking at the x-coordinates of each of these nodes here. For example, if 

you consider node one, this is at half distance of this cell length, which is 0.1, so it is 0.5. 

Similarly, this is at a distance from the coordinate from the origin, which is fixed at this 

corner here. The x distance is equal to 0.1 - one-cell length, this is 1.5 cell lengths, 2 cell 

lengths, 2.5 cell lengths, so that is how it is increasing here. And if you consider C, it is 

exactly above 2 cell-2, so it has the same x distance as cell 2 and 0.7 and 9 have the same 

x distance as 0.3, so 0.1,5 0.15, 0.15. And 8 have the same distance as 4. 

So we can we can do this we can do it in a more systematic way from the coordinates 

and we will see that at later stage. Similarly, we can fill the y c of the centroid, we can 

see that this is at one-third of the total height and so that is how it is given as this the 

height divided by 3. And if you consider this, this is two-thirds of the centroid height, so 

this is given two-thirds of the height of the cell. And the heights of 3, 4, 5 are also similar 

we can get this. And if you consider 0.6 here, this is one cell height plus one-third, so it is 

4 by 3 of cell height, and this will be 5 by 3 of cell height, this is 7 by 3 of cell height, so 

that is how we can get all the coordinates of the centroid in this two-dimensional case. 

Now, we have for each cell we would like to have the midpoint of the phases, and we 

already said that we will always start with the horizontal side, and we go with the counter 

current direction. So, the horizontal midpoint is defined as point p. So, for the point p 

here for cell 1, which is at this point, we can put the x, y coordinates. For example, the 

midpoint is at half cell distance so that is 0.05, and it is at y equal to 0, and it has an 

outward normal vector which is vertically downwards, so it has n y of minus 1 and n x of 

0, so this information for point p of this cell. And similarly, if it consider this cell two this 

is point p, and there again you have n x equal to 0. In fact, since we are considering 



 

 

horizontal phase as point p for all of them n x is 0, x m p will change and y m p will 

change as per the actual case, so n y is minus 1. 

And having filled this, we can go to the second point q here which is the second side as 

we go in the counterclockwise direction. And for cell 2, this is point q; and the outward 

normal vector is like this, so you have n x positive and n y positive, and that is how you 

have n x positive and n y positive, and these are given by cosine 30 and sine 30 here. 

And we can also find the midpoints of this. 
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And similarly for point side r in which case this is it, and here we have outward normal 

vector like this, so you have negative n x and positive n y, and that is what we are seeing 

here minus cosine 30 and plus sine 30 here. Now, along with this, we also need to have 

the gradient information, which I am calling as f for flux, not really flux here, it is a 

gradient. So, the gradient for point p n x is 0 so we do not need to evaluate the gradient 

we can put any value, it is simple to put 0 value. And the y gradient dou w by dou y at 

point p for cell 1 here is based on the value of w at 0.1 at the centroid minus the value at 

the wall divided by y c 1 minus y m. 



 

 

So, similarly, the same thing will appear here; here also we put for cell 2, the gradient at 

this point is and we have said always we will start with the cell value, so w 2 minus w 6 

divided by y c 2 minus y c 6. And for this, we need the wall information. And here again 

we have immediate neighbor 8 here, so we make use of that value. Again, we have the 

wall; and for 7, we have 0.9 as the immediate neighbor, so it will be w 7 minus w 9 

divided by y c m y c 5 minus y m of that particular thing. So, this y m is actually 

available here already filled up. So, we are looking at 7 here, so w 7 minus w 9 lengths, 

and we can do the same thing for point q, we have n x x m r and all that. 

So, for q here corresponds to this, and since there is a neighboring cell here we make use 

of the neighboring cell to evaluate the gradients here, here, and here. So, consistently we 

go through systematically through all the phases and evaluate here n x, n y, f x, f y for 

each of the phases. Since, all the phases have the same length here, I have not included 

that, but you can if the length changes then you need to include that also here. 
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So, having gotten this now so this is how we are evaluating and this is actual 

computation numerical computation. And what I have done here in this cell is to I am 

trying to assemble the coefficient matrix a. 
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And when I put the coefficient matrix eventually, I will have something like this, this is 

coefficient matrix and this is w. So, the w's do not appear in the coefficient matrix; it is 

just the product of this n x's and the coordinate information like the distances, only those 

appear here, so that information is what is evaluated here. So, this matrix here just 

contains numerical values for these things except here the numerator the w 1, w 2 are not 

included here. So, with this, we can evaluate for example, this one is equal to 1 by d 81 

minus d 83 and d 81 is y c minus d 83 is y c y m p, and that is what we have here, y c 1 

minus y m and so times d 85 which is n y.  

And if you look at this one here, this is d 91, since we are looking at n y times F y d 91 is 

this divided by d 81 minus e 81. And if you look at the formula for this, this is side q 

here, so you have y c 1 minus y c 2. And d 81 is this; d 81 minus e 81 is the distance 

between the vertical distances between the two centroids. So, in that way we can 

evaluate the n x, f x and n y, f y in terms of the geometric parameters into this. 

So, now we have this one. And so from these we need to sum up all the contributions 

from this, this, this, this, this, this times the corresponding n x's. So, there needs to be 

summed and for example, when you look at the contribution to w 1 from node 1, you see 

that there is a contribution coming from point p which is equal to n y times minus 1 



 

 

divided by y c 1 minus y m here. And then there is a contribution coming from this and 

this so that is there is a contribution coming from, there is a contribution coming from 

this and there is a contribution coming from this, and there is a contribution coming from 

this and again from this. So, the locations the sides in which w 1 figures is the one that 

needs to be added up here in order to get this whole thing. 

So when you look at this value here, this is sum of d 86, 87, 92, 93, 98, 99; 98, 99 are 

these two, and 92 93 are these two, and 86 87 are these two. Similarly, if you go to this, 

this is center, this is w 2 coefficient from the second equation, this is also again the sum 

of these two plus sum of these two plus sum of these two, so that is how we can evaluate. 

And here again it is the sum of this is the fifth cell, so the corresponding sum of these 

two so that is 86 87, and then 92, 93 these two here, and then 97, 98, 99. So, in that way, 

we can evaluate the diagonal coefficients.  

And the other terms here, this is essentially the first equation the coefficients in the first 

equation. And cell one interacts with cell two and we can see that in the formula here. 

So, in the cell one equation, we have contribution from w 2 and that contribution can be 

estimated it is contributing in point two here, so it is the sum of these two and that is 

what we have here. So, it is minus d 92 minus d 93, because it is coming out as negative 

valid here. So, in that way, we can fill all the coefficients here from this table. Once you 

put that all the coefficients, this becomes the coefficient matrix a. 
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And these are the variable matrix. 
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And this is the b, the right hand side here. 



 

 

(Refer Slide Time: 23:39) 

 

And if you write in plain equations then the corresponding equations will be like this, we 

have nine equations for the nine cells. So, these are the nine equations which can also be 

put in a matrix form like this. Now, so we have using this very detailed procedure, 

systematic procedure, and only after this systematic procedure, we have been able to 

convert the partial differential equation into a set of algebraic equations that we see. And 

so in that sense finite volume method is much more tedious and more difficult to 

program than finite difference method, in terms of converting finding the coefficients of 

a and that is the simplicity of finite differences.  

But finite volume method can be used for any cell not necessarily composed of 

topologically quadrilateral kind of thing with grid points at intersection of coordinates. 

So, this can be used for any number of sides, it can be used for a 6 sided hexagon or any 

polygon, it can also be used this can be used for any of those things and so that is 

advantage, but because that advantage is offset to some extent by the need to do so much 

of bookkeeping and accounting and all that. 

At the end of that, you have a set of equations, which share features which are similar to 

what we have got from the finite difference method. If you look at these equations here, 

this is the coefficient matrix. Now when we want to solve this the question of whether 



 

 

we can apply Gauss-Seidel method comes in; and for that we have the diagonal 

dominance condition, which means that the diagonal element along any row, the 

diagonal element must be greater in magnitude then the sum of the other off diagonal 

elements in the same row. So that is satisfied for first equation. It is also satisfied with an 

equality because 34, 34 and 17, all this will add up exactly to this. So, it is satisfied with 

equality here. And here it is less than again equality less than equality. Now this is again 

less than and equality, and less than, and less than. 

So, that less than and equality are with reference to this. For this one, we estimated the 

fluxes using the three neighbors there is no wall. So, when you have something estimated 

using the three neighbors and no wall information is coming, then the diagonal 

dimension condition is satisfied with an equality side, so that is true for cell 2, because 

there are three neighbors here; cell 4, there are three neighbors here; cell 7, there are 

three neighbors. But for cell 3, you have wall here; cell 1, you have two walls here; and 

cell 6, you have wall here; and 9, you have wall, for these things you do not have you get 

a greater than sign for this type of problems. 
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So, with this thing we can use the Gauss-Seidel method. So, we have already seen how to 

convert this into an equivalent Gauss-Seidel method. In the first equation, we keep this to 



 

 

the left hand side - w 1 to the left hand side, and we take all the other terms to the right 

hand side. In the second equation, we keep this largest value here as the on the left hand 

side, and we take everything else to the right hand side. The right hand side terms are 

evaluated at kth level and the left hand sides are the value actually at k plus 1 th iteration 

level and that is how we can do this. 
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So, this is starting with again 0, 0, 0 values for C value of 100 here. We see that we are 

getting converge solution soon pretty soon within about 10 iterations, 10, 15 iterations, 

we have essentially got a converge solution and so the velocities are changing. So, 2 and 

6 are symmetric, so we get the same value; 2 and 4 are symmetric, and so that kind of 

symmetric 6 and 8 are symmetric, so we get this; 1 and 5 are symmetric, so we get that 

that kind off.  

So, in this way, we can get a solution which is evaluation of the w velocities at the 

centroid of each of the cells. If you increase the number of points then the accuracy of 

the whole calculation proves, but that will involve more number of discretization and 

evaluations, but it can be done it is done and that is what CFD is all about it is about how 

to do this algorithmically, so that we can get a computer solution. 


