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The Generic Formulation for Turbulence 

 

We have seen in the last lecture the turbulence closure problem, which is that if we time 

average the governing equations that is the continuity equation and the momentum 

balance equations, then we end up with equations in which the variables are indeed the 

time averaged quantities denoted here by the over bar. 
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But in addition to the time averaged velocity components and time averaged pressure we 

also have this time averaged values of the fluctuating components u i m prime over bar. 
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And we said that these are; in the general case these are non-0, and these also vary 

significantly within the computational domain and therefore, we do not know how they 

vary. And the variation depends on the type of flow which means that, they remain 

variables and unknowns this means that the time averaged equations are really like 

unknown things. And as a result of time averaging, we have the same 4 time averaged 

equations which involve together a total of 10 variables rather than 4 variables. 

Now, we would like to look at how to close this problem and come up with a set of 

equations which has as many number of equations as the number of variables, then we 

can try to solve them numerically. So, in this in order to see what we have lost through 

the averaging process, we can rewrite the governing equation that we have here as the 

time averaged one, in such a way that these terms are taken on to the right hand side and 

we can put them in this way without making any change here when you take him to the 

right hand side you get minus sign here - you have dou by dou x m of this and you have 

dou by dou x m of this. But by clubbing this together with this term here which is the 

viscous system nu d u by d y for example, is a viscous stress. 

So, we can see that these things that we have are somewhat like stresses and these are 

known as Reynolds stresses, in honour of a Reynolds who started this decomposition 

business and then came across this way of writing it. So, this Reynolds stresses are what 

make the turbulent flow, are those things that make turbulent flow different laminar flow 

and one manifestation of that is the time average velocity profile that you have in 

typically in turbulent flow.  



And it is expressed in some special coordinates which also shows that we need some 

special treatment for turbulent flows and here for example, it is plotted as in terms of y 

plus where y is the non-dimensional normal distance from the wall, height from the wall 

and here is non-dimensionalized by y plus is defined as y u friction divided by nu we 

have seen that already, friction velocity. And the velocity itself is on the y axis is non-

dimensionalised by dividing the velocity, parallel to the wall by the friction velocity. 

If you do that you can see that this is on a linear scale and this is on a log scale. So, you 

have 530, 500 and so on like that, and up to y plus of 5 you have a linear variation of 

velocity with distance from the wall. And after that, you have a strongly non-linear 

region which is followed by quite an extended region where velocity varies 

logarithmically with y. So, you have u versus log y is actually a straight line like this. So, 

based on this you define a viscous sub layer for y plus less than 5 you have no turbulence 

and for y plus greater than about 30 and stretching up to 500 and even beyond, you have 

a linear variation between u and lawn y, it varies, velocity varies logarithmically with the 

distance in the wall and after that you have wake region in which you have strong effects 

comment picture. 

Now, when you look at what these distances are in actual quantities this y u star by nu 

and in our example that we had u star as 0.1 meter per second and nu is 10 to the power 

minus 6 meter square per second. So, u star by nu is 10 to the power minus 5, is 10 to the 

power 5 so that means, that when you say y plus of 5; it actually means 5 times 10 to the 

power of minus 5; meters is the actual height and 5 times 10 to the power of minus 5 is 

0.05 millimetres. So, this distance is 0.05 millimetres and y plus of 30 is 0.3 millimetres 

in a pipe having a radius of 25 millimetres. 

So, these things are very, very close to the wall and then y plus of 500 is about 5 

millimetres. So, all this is within 5 millimetres of the wall and you have this kind of 

variation which is very different from the variation that you would have for laminar flow 

and this kind of difference and the variation of all these things is the characteristic, 

difference between turbulent flow and laminar flow and that is caused by this term here 

dou by dou x m of u i prime u m prime bar. 

If this is neglected, and if you solve these things you get exactly the same velocity profile 

as in laminar flow. So, the true inclusion of turbulent flow effects is determined by how 



we deal with these u i prime u i prime and we have no idea of what these things are 

because they vary in a non-monotonic, non-simple way something is going up rapidly 

within y plus of around 20. The peak value is reached here at y plus of some 10 to 15 y 

plus so that means, very, very close to the wall. And then it starts decreasing, again in a 

non-monotonic way; in a monotonic way, but in the non-linear way and the response of 

different stresses is different; different components are varying in a different way. There 

is no simple way algebraic way of representing the variation of these in the general case. 

This is the case of turbulent flow fully developed turbulent flow in a pipe. So, this is 

what makes turbulent flow very complicated and very complex and turbulence even 

today is considered as one of the unsolved problems of physics not engineering, but 

physics. And many generations of physicists have worked on it and fluid dynamicists 

have worked on it to make significant advances of turbulent flow we understand much 

more we can predict much more today about turbulent flow than what we could have 

done over the past 100, 150 years. 

We would not be able to deal all that, but we will be looking at some simple things that 

that are easy for us to understand, especially from the closure point of view. If we have 

10 variables and 10 equations then how do we solve? 
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So, let us reduce complex to the problem from 3-D flow to 1-D flow and we are 

considering steady fully developed turbulent flow between two infinitely long and wide 



parallel plates. So, here you have pressure gradient is constant, the velocities v bar and w 

bar in the other two directions are 0 and only u bar is non-0. It is like 1-D flow that we 

know for the corresponding laminar flow between two infinitely long and wide parallel 

plates which is fully developed.  

And since it is fully developed d by d x of anything else is 0. So, if you now look at what 

these things mean to the time averaged continuity equation, you get d by d x of u bar 

equal to 0 that is anyway understood because it is fully developed flow. So, there is 

nothing much coming from the continuity equation. The time averaged x momentum 

balance equation, where x is in the flow direction has this thing and all the red quantities 

here are 0. So that means, that this term drop out its steady state and variation with 

respect to x is 0. So, these two terms will go to 0 v bar is 0, so this one is 0 and this is 

non-zero and this is dou by dou y which is non-zero and here w bar is 0 and variation 

with respect to z of anything is 0. So, this term is 0. 

And pressure gradient is constant, variation with respect to x is 0 and variation with 

respect to z is 0. So, you have a resulting equation which is like this, a pressure gradient 

which is a given constant is equal to nu dou square u by dou x square or in this case d 

square u bar by d y square because it varies only with y, minus d by d y of u prime u 

prime bar. Now you have this single equation, continuity equation does not give us any 

information. Single equation involving two variables u bar which is a function of y and 

this u prime v prime bar it is again a function of y. 

So, even in this particular case of the simplest possible condition of fully developed 

steady one dimensional turbulent flow, we still have the problem closure that we have 

more number of variables and the number of equations available. So, this is the 

turbulence flow of closure problem and it can be solved only by bringing empirical 

information or by making simplifying assumptions. And both have been done over the 

past century. 
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Going back to 1877, so which is about 140 years ago where Boussinesq made the 

hypothesis that this u i prime u m prime which are like stresses can be represented as a 

turbulent stress times dou u i bar by dou x m plus dou u m by dou x i. So, this is like 

exactly the way that we are treating tau i j according to the navier stokes equations. It is 

written as nu dou u i by dou x j plus dou u j by dou x i plus two-thirds of a plus lambda 

times dou u m by dou x m. So, this similar kind of formulation is brought in here except 

that instead of the kinematic viscosity now we have eddy viscosity. This nu t, subscript t 

is turbulent or eddy viscosity, kinematic viscosity and this particular term is made sure 

that when you sum all these normal components we do not get 0. So, it is just something 

like this. 

So, if you put for example, u prime u prime bar. So, that is i equal to 1 and m equal to 1 

in this you get 2 nu dou u bar by dou x minus two-thirds of k, where k is half of u prime 

square plus v prime square plus w prime square bar quantities. This is the turbulent 

kinetic energy which we have seen earlier, and similarly if you want u prime v prime bar 

which is what we want here and that is given as nu t times. So, in this case i equal to 1 

and m equal to 2. So, you put i equal to 1 and m equal to 2 you get dou u bar by dou y 

and then you put m equal to 2 here and i equal to 1 you get dou v bar by dou x. 

So, this is the way of writing this. So, these Reynolds stresses are expressed in terms of 

eddy viscosity and the conventional treatment of viscous stresses. So, if you were to 

substitute this thing here, this is the equation that we have of fully developed turbulent 

flow between parallel plates and you substitute this expression here and you can write 



this as d by d y of nu effective time d u bar by d y. So, this is almost like the laminar 

flow except that you have new effective which is nu plus nu t.  

Now you can say that, now let me put nu t to be some constant and if you put nu t to be a 

constant in such a way that the pressure gradient in turbulent flow would match with 

what is predicted here. For the same flow rate then you would have the difficulty that the 

solution of this with a constant nu t since nu is also constant, that means, that nu effective 

is constant that means, this should be like a parabolic velocity profile, but we know that 

in turbulent flow we do not have a parabolic velocity profile. 

We have just now shown a variation which is quite characteristic of turbulent flow which 

is different from laminar flow and you cannot get that by making nu t as a constant. So, 

nu t has to vary with y in order to have a different velocity profile, if you make nu t as 

constant then this whole thing is exactly like a fluid with a higher viscosity. But that is 

not all what turbulence is turbulent flow is.  

So, it must have a different velocity profile by matching pressure gradient; small 

mistakes here. So, the quest for a proper formulation of nu t given that this possibility is 

the possible way of modelling after 50 years has led to success through Prandtl's Mixing 

Length Model, where prandtl in 1925. This prandtl is the same prandtl of the prandtl 

number for heat transfer and all that. So, this model has come to be known as the mixing 

length model. So, we will just see what it is. 
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For steady fully developed turbulent flow between parallel plates we have this 

expression, once you substitute the boussinesq eddy viscosity hypothesis you have this 

and prandtl suggested that this u prime v prime bar it should be written as l m square 

times d u bar by d y times d u bar by d y. Where l m is the mixing length, and if you now 

were to write this because it is 1-D flow dou v bar dou x is 0. So, u prime v prime bar is 

nothing, but nu t times d u bar by d y. So, if you would take this out that will give you a 

nu t of l m square times d u bar by d y where l m is a mixing length. Why this is made in 

this particular way? There can be many picturizations of this the mixing length is can be 

seen as a characteristic distance over which turbulent eddies are mixing fluid layers 

having different momentum and velocity. 

So, this mixing of different fluid layers causes a velocity fluctuation. For example, you 

have a low velocity moving layer and a high velocity moving layer above it. And if 

because of turbulent motion this fluid from here having this low velocity comes here 

then that immediately produces a velocity fluctuation which is characteristic of the 

velocity difference between the two layers, and so that characteristic velocity is delta u 

where u is the time averaged velocity which is function of y. So, therefore, you can write 

this delta u as d u bar by d y times l m the mixing length. So, this gives us an idea of the 

mean velocity fluctuation u prime and in turbulent flow all the velocity fluctuations are 

roughly of the same order of magnitude. 

So, you can say that u prime rms is roughly equal to v prime rms. So, that if you are 

trying to evaluate this u prime v prime bar, you can now say that this is proportional to d 

u by d y times l m and this also proportional to this and that gives you l m square times d 

u by d y, whole square that is this one. Since we want to have a viscosity which is always 

positive, we write this as mixing length square times modulus of d u by d y. So, that is 

the way that we can explain prandtl mixing length model.  

And what this actually is not over because we still need to specify what the mixing 

length is. So, that many possibility proposals have been made for mixing length - one 

simple thing is that mixing length is now being looked upon as an eddy which is causing 

this mixing and if you have a wall here then you cannot have a huge eddy, the size of the 

eddy close to the wall is governed by the distance from the wall. 



That means, that you can say that mixing length is proportional to distance from the wall 

and based on measurements of the velocity profile and all that we suggested this kappa 

proportional to constant to be 0.4. So, if you were to put this kappa y 0.4 y in this then 

you know nu t and if you know nu t then you can evaluate this and then you can put this 

here and you can predict for a given pressure gradient what the velocity profile is and 

you can see how well it matches. And thereby you can try to find some constant kappa 

which matches with the measured velocity profile and that is how this value of 0.4 was 

arrived at. 

So, this particular model is such that with l m as being proportional to kappa times y and 

mixing length itself, viscosity itself being proportional to l m square, that is y square and 

then you have d u by d y which itself varies with y. That means, that in this model you 

have nu t viscous turbulent viscosity which is a function of y and we said that this 

functional dependence of y is necessary for us to get a velocity profile which is different 

from that of laminar flow velocity profile. But it is this particular form which actually 

gives us a velocity profile which matches with what is measured experimentally. 

So, in that sense that is why it is been so difficult to get this and that is why this 

particular model has survived the test of times and it is still used in for very simplistic 

things. It has been very successful, highly successful in predicting the logarithmic 

variation of velocity in the near wall region, and several modifications have been 

proposed for this. This model is with those kind of modifications is supposed to work 

very well in the near wall region. So, that is y plus of maybe up to 200 up to 500 like 

that.  

As we go deeper and deeper into the flow and farther and farther away from the wall 

then other effects come in, so at that point this model will be failing a bit. So, what we 

have considered is essentially flow along the wall, parallel to the wall. But the same idea 

can also be extended to other types of flows for example, flow between two mixing 

layers - we have high velocity jet and low velocity jet, they mix and then they form a 

mixing layer which is growing bigger and bigger.  

And if we want to look at what is the expansion of this kind of jet, rate of expansion with 

distance then you can again come up with a prescription for mixing length you can also 

have wake flow, you have a bluff body behind that you have low velocity region which 



again ultimately becomes fully developed flow and the velocity in the wake region can 

also be predicted by having it is own mixing length model. 

So, there have been several kinds of mixing length models proposed for different kinds 

of flows. These several models can be considered both an advantage and also 

disadvantage, when you look at the model. It is an advantage because the model can be 

applied not just for flows which are parallel to the wall in pipe flow, but they can also be 

applied to boundary layer flow, they can be applied for as I mentioned flow over a sphere 

type of things and flow defined bluff bodies, wedge flow all these kind of flows can be 

treated with an appropriate model for the mixing length. That enables us to do turbulent 

flow calculations over these kinds of aerofoils and those types of practical applications.  

But it is also a disadvantage because, for each case you have to come up with a mixing 

length model and how do you know which one is correct. You have to do experiment and 

if you have to do experiments and fix this value then what are we actually getting from 

the prediction. So, there is that kind of problem that is there. 

In the next lecture, we will look for something more generic where you do not have to 

specify this mixing length and then, if we can have a model which calculates turbulent 

viscosity without having to have this (Refer Time: 24:08) prescription for mixing length 

then that would be more beneficial. And that is the kind of model that has been 

developed much later in the 1940s 50s 60s, there have been lots of developments on 

turbulent flows and we look at once a generic model as part of this course. 


