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Lecture – 48 

Recap of Basic Iterative Method 

 

We have been looking at Basic Iterative methods. In iterative methods we do not solve 

Ax equal to b directly rather we solve repeatedly the equation Qx k equal to Q minus Ax 

k minus 1 plus b and approach the solution asymptotically. 
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This is what we have seen, and in one of the basic iterative methods the Jacobi method 

we write iterative scheme as x k equal to Q inverse Q minus x k minus 1 plus b which 

can also be put in this form finally, in the form of m x k minus 1 plus n and the Gauss-

Seidel method we write the iterative scheme as x k equal to Q inverse of Q minus a x k 

minus 1 plus b equal to in this form; which looks exactly the same except the definition 

of Q. In the case of Jacobi method Q is the diagonal elements of A and in the case of 

Gauss-Seidel method it is the diagonal elements and the elements which are lower than 

the diagonal thus constitute the Q. 



So, in both these methods it looks like we have to do inverse of Q and then we have to 

multiply by Q, it looks like complicated matrix, procedures are there. But it is not really 

necessary to do it that way, we do not do matrix inversion and actual computations, but 

solve directly in the following way. 
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So, let us consider the set of equations given by a 11 u 1 plus a 12 u 2 up to a 1 n u 1 

equal to c 1 and so on here, this u should have been x. So, similarly the second equation 

is given by a new set of coefficients a 21 u 1, a 22 u 2. So, the same variables, but new 

coefficients similarly for the nth equation new coefficients were the same variables, this 

is the system of linear algebraic equations. 

In the Jacobi method we make use of the first equation and put all these other elements to 

the right hand side. So, we can put this as a 11 x 1 k plus 1 equal to a 12 x 2 k minus a 13 

x 3 k and so on plus b 1. So, essentially we have this b is the same as the c here. So, we 

have rewritten the original equation that we have here with the same b as what we have 

for the given equation. All the other elements except the first element in the first equation 

is shifted to the right hand side and. So, from this we can get x 1 k plus 1 as a 12 divided 

by a 11 times x 2 k minus a 13 divide by a 11 x 3 k and so on plus d 1 by a 11 that 



means, all the right hand side is computed and you divide by a 11 to get x 1 k plus 1. So, 

there is no inversion as such in this. 

Similarly, the second equation here is written in such a way that only this term is kept on 

the left side all the other terms are taken to the right hand side. So, we have b 2 minus a 

21 x 1 and minus a 23 x 3 minus a 2 n minus 1 x n minus 1 minus a 21 x 1 k like this. If 

you consider the last equation here the last equation this term here, this is the n minus x n 

minus 1 is the diagonal element. So, this is kept here and all the other terms are taken to 

the right hand side along with the right hand coefficient here. So, in each case by 

rewriting it like this we can evaluate x 1 k plus 1 by doing all these multiplications with 

the previous values of x and then subtracting from b 1 here and dividing the result by a 

11 to get x 1. Similar for x 2 similarly for x 1, you solve each of these equations for x 1, 

x 2, x 3 x and minus 1 x n. 

So, we start with initial guess x 2, x 3, x up to x n, the zero indicating the initial guess 

and solve n equations of equation 2 for x 1, x 2, x 3, x 1, x 4 all you have to x n for the 

first step. Now you have x 1 for all of these and then again substitute them here and then 

again solve equation 2 for x 1, x 2, x 3 x all the way up to x n for at the end of the second 

iteration step and once you get x 2 you can again get all of x 3 and so on. 

So, in each case you are not exactly solving this equation you are using the first equation 

to get a new estimate for x 1 knowing the values of all the other variables from the 

previous iterations. Similarly the second equation is used to get the value of updated 

value of x 2 making use of all the previous values of this and then we can go on. So, 

what we see from here is that it would take n minus 1 multiplication - for example; you 

have one multiplication, second multiplication, third multiplication up to n minus 1 

multiplication this and this, there are n minus 1 because this will make it nth 1. Since it is 

on this side we have n minus 1 multiplications to give us this whole thing and then n 

minus 1 additions plus this, n additions and the whole result of this n minus 1 

multiplications and n additions is divided by a 11 to give us x 1 k plus 1. 

That means, that you have you need n minus 1 multiplications and 1 division to solve 

one equation and in each iterative step you have to solve n such equations because you 



have to get an updated value for x 1 and then x 2 updated value for x 2 and all the way to 

x n that means, that if you need to go from step k to step k plus 1 we need to solve we 

need to use a total of n multiplications or division for one equation and you have n such 

equations, that means, there are n square number of multiplications or divisions that are 

needed to go from step k to step k plus 1, this is in the general case. 

And n square does not seem to be such a good thing, but if a is sparse which is what we 

have in CFD generated compact grid discretizations and has only 5 nonzero coefficients 

for a 2-D problem or 7 nonzero coefficients in a 3-D problem for example, in central 

differencing then, what we have is that in each of these equations only there are 7 non-

zero coefficients that means, that one of this is kept on this side the other 6 are coming 

out of this. That means, that we have to multiply only 6 times not n times or n minus 1 

times. 

Similarly this is again 6 times. So, each equation is going to have 6 multiplications and 1 

division 7. So, that is only 7 n number of multiplications are needed to advance from k to 

k plus 1. So, in that sense the Jacobi method takes advantage of the sparsity of matrix a 

instead of doing it for all of them it does only for those equations which do not have non-

zero coefficients and by doing that it goes from n square number of multiplications or 

divisions to 7 n or 5 n number of multiplications or divisions to go from step k to step k 

plus 1.  

Now what does that mean if you have 10,000 equations, 10,000 grid points? Then if you 

do for every one of these in the general case it would take 10,000 square, that is 10 to the 

power 8 of multiplications to go from k to k plus 1. But if the same set of equations is 

such that a is coming from the usually discretized CFD type of equation then we have to 

do only 70,000 arithmetic operations not 10 to power 8 which is 100 million. 

So, that is the kind of advantage that we get when we are dealing with sparse matrix and 

a sparse matrix advantage is achieved is exploited by Jacobi method. So, in that sense it 

makes it much better than in the general case. So, in the general case we are not gaining 

much of an advantage whereas, in this case we are gaining a significant advantage 

because this n square looks attractive compare to the n Q by 3 for a Gaussian 



elimination. But we do not get a solution in one step of k to k plus 1 you have to do 

many of those.  

So, how many of those depend will tell us the total number of computation and we will 

see that shortly. But the way that we actually implement Jacobi is such that we take 

advantage of the non-zero coefficients and the sparsity of matrix a and we go from step k 

to step k plus 1 in 7 n or 5 n number of or some constant times n where the constant is 

the order of 10. Number of multiplications and divisions to go from step k to step k plus 

1 and when you look at what is actually required to do these things it is pretty straight 

forward there is nothing difficult at all in going from step k to step k plus 1 it is very 

simple to program. 

Now what happens in Gauss-Seidel method for the same set of equations in the Gauss-

Seidel method? We have Q becoming d minus e and all that kind of thing. 
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We can now forget all that and we can rewrite it in this simple form which results in the 

same form as what we have earlier. So, that is the first equation remains the same as in 

Jacobi method a 11 x 1 k plus 1 is b 1 minus a 12 x 2 k minus a 13 x 3 k and so on up to 

minus a 11 minus 1 x 1 minus 1 k minus a 11 x 1 k. The second equation is similar to the 



previous one except that by the time we have come to solving the second equation we 

have already solved the first. So, we know the k plus 1th iterative value the updated 

value of x 1. So, we make use of the updated value here.  

We have not solved the third equation. So, we still have only the old value and then all 

these things are old values and then you have b 2. By the time you come to the n minus 

1th variable x n minus x n minus 1, we have solved for x 1, x 2, x 3 all the way up to x n 

minus 2. For all those things we make use of the updated values and only for the yet to 

be updated value x and k is put as old value. So, in that sense the Jacobi method and 

Gauss-Seidel method are very similar except in the case of Gauss-Seidel method 

wherever we have an updated value we substitute that into this and otherwise it is the 

same approach no matrix inversion and we solve again with an initial guess and then 

from this we solve for x 1 and then x 2 x 3 and so on. 

Again, if a is sparse then we do not have to do it for all of these and we have only 5 or 7 

n number of non-zero coefficients then it takes only 5 n or 7 n multiplications that 

means, that we are really taking in the advantage of sparsity here. The Gauss-Seidel 

method will consume exactly the same number of arithmetic operations as the Jacobi 

method to advance from step k to step k plus 1. But there is one key difference which 

sometimes makes the Jacobi method better than the Gauss-Seidel method. One would 

immediately see the contrast between the two is that we are making use of updated value 

as soon as it becomes available in the Gauss-Seidel method. So, one would intuitively 

feel that Gauss-Seidel method should be better than the Jacobi method, which is true in 

some cases in many cases where we apply this, but there is one advantage of the Jacobi 

method as opposed to Gauss-Seidel method. 

Even though it is slower and the thing is that if you have for example, a million 

equations and you want to solve these things. Then we can solve each equation 

independently whereas, if you are doing it using the Gauss-Seidel method if you want to 

solve this equation you have to wait for this equation to be solved. Similarly if you want 

to solve this equation you have to wait for all these subsequent equations to be solved. 

So, that you can the updated value here so that means, that if you are making use of large 

number of parallel computers and then out of a million equations or 100 million 



equations you give to this computer the first million equations and for this you get you 

give the second million equation, third million equation and so on. 

Then this computer cannot operate cannot start the process until this computer has 

finished all it is computations and given to you. But if it is a Jacobi method you can 

subcontract part of the work to this set of computer and you can subcontract another 

thing and then you can get back the solution from these sub contract computers and then 

put together and move on to the next one.  

So, that kind of parallel processing will is more readily implementable in the case of 

Jacobi method because each set of equations can be solved independently from the 

previous known values. Whereas, in this case you cannot solve this equation until all 

these things are solved and you need to have these things solved and the information 

should be supplied to you. 

So, there is the information evaluated by solving the equation and then stored and 

retrieved, sent back stored and retrieved all those kind of operations will become 

necessary, in the more of them will be necessary in the case of Gauss-Seidel method. So, 

that is the disadvantage that is there. But precisely because we are making use of updated 

information we would expect the Gauss-Seidel method to work, but in some special 

cases that may be a disadvantage.  

So, let us come back to this thing here. The number of multiplications or divisions to go 

from step k to k plus 1 is the same in both Jacobi method and Gauss-Seidel method. The 

actual number of arithmetic operations depends on how many times we have to solve 

equation 2 or 3 for the Jacobi method and the Gauss-Seidel method to get a converged 

solution. 

So, this is as pointed out earlier, we need 5 n or 7 n number of arithmetic operations 

multiplications or divisions to go from step k to k plus 1 that is only one step. How many 

steps are needed to get a converged solution? Converged solution here we are saying is a 

solution which x k plus 1 that is updated one is almost equal to x k to the 1 that we have 

updated. If the amount of the updating between the previous and the current one is very 



little is very, very small then we can say it is almost converged solution because any 

further updating is not making bunch of change.  

So, if you want to go up to that how many steps you have to take to get down to that 

position that depends on that tells us because in each step you are using 7 n number of 

computations. So, that will tell us the overall amount, and how to get that is something 

that we will have to see by looking at what is the convergence rate, what are the 

convergence characters. 
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So, here we have a very simple problem a 3 by 3 problem and x 1 plus 2 x 2 minus 2 x 3 

is equal to minus 1 and x 1 plus x 2 plus x 3 is equal to 6 2 x 1 plus 2 x 2 plus x 3 is 

equal to 9. We would like to solve this equation using Jacobi method and Gauss-Seidel 

method and we would like to solve this with all the values to be 0 here. So, what I have 

plotted is iteration number and the 3 values what are the values that we are predicting 

and how we are updating here.  

Since, we have 3 we can just show a graphically like this and the computed value of x i 

is plotted on the y axis and the iteration number is plotted on the x axis - x 1 is given in 

the blue color, x 2 is in that reddish color and x 3 is in the green color. Each with it is 



own symbol diamond, square and triangle respectively. You can see that we start with 

zero values for all the 3, and at the end of the first iteration, first step x 1 has decreased to 

something like minus 1.5, x 2 has increased and x 3 has increased.  

At the next step x 2 has x 1 has increased from minus value to positive value and the 

other 2 have come down, and at the next step again x 2 has come down here and x 1 has 

come down and x 3 and x 2 have come up. And after that there is very little change that 

means that you can see that there is a big change, a big change, a smaller change and 

then very small changes and it seems to have converged because here at least graphically 

we are not seeing significant change between the previous one and this one. 

So, for the same initial guess if we use the Gauss-Seidel method for this particular case 

we were expecting to get much faster solution because of updating and we see that we 

have a problem here. Because the computed values, the solution finally, we can see is x 2 

is 1 x 2 is 2 and x 1 is 1 and x 3 is 3. So, x 1 plus x 2 plus x 3 1 plus 2 plus 3 is 6 again 1 

plus 2 x 2 that is 4 minus 6, that is 1 plus 4 minus 6 that is minus 1. So, the true solution 

is 1 2 and 3 for x 1, x 2, x 3 that we have got in very small number of steps here for the 

Jacobi method.  

But we see that with the Gauss-Seidel method at the end of 4 iterations the values are 

coming as something like in excess of 200 for x 2, and then in excess of minus 200 for x 

1, and x 3 is also not a small quantity. At the next step here, x 1 has become minus 600, 

and x 2 has become plus 600, x 3 has become minus 50 or something like that. 

So, instead of being converging to values of 1 2 3 they are divergent. So, in this 

particular case we see that Jacobi converges quickly and Gauss-Seidel method diverges. 

We can also have other system of equations in which Jacobi method diverges and Gauss-

Seidel method converges and some others in which both converge and some others in 

which both diverge. So, any kind of thing is possible and the difference is the small 

changes we are making whether to update or not update, it is not something that we can 

say that updating is universally good. We cannot say that this is very easy and then let us 

go on do it and we can see that there are methods; there are problems, simple problems 

in which they do not work. 



So, it is precisely for this reason we have to do a proper convergence analysis. Just like 

in module 3 we took a simple problem and we showed that the wave equation and for the 

diffusion equation constantly, diffusing equation we have using the simplistic finite 

difference approximations can give us sometimes to problematic solutions and we see 

exactly the same kind of thing here. Although the iterative methods, this basic iterative 

methods are quite easy to implement and program they will not work in all cases, we 

have to do an apriori convergence analysis to see that the method would actually 

converge, only then it converges we can attempt this. So, first thing that needs to be done 

is under what conditions this will a given method converge and then if it converges then 

we are interested in the rate of convergence. 

So, this is what we are going to do in the second part of this module 5. So, what we have 

learnt in the first part are very basic direct methods and iterative methods for the solution 

of Ax equal to b type of things. We have seen focused specifically on the Gaussian 

elimination method, the lu decomposition method and the tridiagonal method as direct 

methods. We made the point that Gaussian elimination is the most efficient method for a 

general purpose Ax equal to b where a does not exhibit any special properties and it is a 

full matrix or nearly full matrix. Lu decomposition is a specialized method which is 

almost as good as Gaussian elimination, but slightly inferior because we have to do 2 

substitution process, one forward substitution and one backward substitution whereas, in 

the case of Gaussian elimination we have to do only one backward substitution. 

So, there is a small difference there, but in cases where we have to solve Ax equal to b, 

several times with the same a then if you do the decomposition of a into l times u once 

then that can be used for all the other equations in which b is changing. So, in that sense 

lu decomposition becomes a better method than Gaussian elimination. It has other things 

also that we will see later on.  

The tridiagonal method is a special method which works very well, but it has limitations 

in its applicability it is much better in terms of computational arithmetic operations than 

either Gaussian elimination or lu decomposition. But it will work only for matrices, a 

matrix having only 3 adjacent diagonals including the main diagonal one main diagonal 

and one above and one below, so only for this case will it work. 



And even in this case we require diagonal dominance. So, in such a case we would not 

have any problem in division by zeros problem will not arise and we can make use of the 

tridiagonal method. It cannot be used for 2-D problem and it cannot be used for 3-D 

problem without any modifications.  

So, when we come to the iterative methods we have seen today also, in this lecture also 

we have seen that Jacobi method and the Gauss-Seidel method. We have seen how easy 

these are to implement and to write programs compared to the direct methods where we 

have to do quite bit of eliminations and all that, which we have not really gone into. To 

write a program for Gaussian elimination will take lot more effort than for Gauss-Seidel 

method or Jacobi method, but for simple 3 by 3 that we have seen in this class here we 

can see that any method is not converging and we also made the point that this is only a 

special case and there are methods where Jacobi method will not converge and Gauss-

Seidel method will converge and all that. 

So, we need to do a convergence analysis and based on this we come up with some 

criteria for the condition of convergence and then once we are sure of convergence we 

look at the rate of convergence. We look in the second part of this module at some 

special methods which improve the rate of convergence over what can be obtained by the 

Jacobi and Gauss-Seidel methods for conditions in which they converge.  

So, that will be part of the second module and we will be looking at advance methods 

which make use of the iterative approach and they also make use of some special 

characteristics of the direct methods. We will also finally look at the multi grid approach 

which is a probably the best general purpose method for sparse matrices that is coming 

out of CFD type of problems.  

So, that is all there in the second part of module 5. So, as of this lecture we can say that 

the first module is complete. 

Thank you.  


