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Solution of coupled equations: Incompressible flow 

 

We are into the second part, part b of module 4, and we are concerned with the solutions 

of coupled equations, and that is question of how to solve together set of continuity 

momentum energy and other equations, but for the specific case of incompressible flow. 
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We know that incompressible flow is not a property of the fluid, but it is a property of 

the flow, if the velocity of the characteristic velocity of the fluid of the flow is such that, 

it is significantly less than the speed of sound in that medium. Then we could call it as 

incompressible flow irrespective. Whether density changes are there or not as a yardstick 

if the characteristic velocity is less than 0.3 of mark number.  

So, that is 30 percent of mark number or less than you could effectively call that as 

incompressible flow, and any density variations any pressure variations within the flow 

which are induced by velocity changes are not going to make a significant change in the 

density. So, that is a kind of linkage that we have with between density pressure and 

velocity and this linkage gets broken to the linkage between the density changes and 



pressure changes a gets broken for low mark number flows, and those flows can be 

considered as incompressible flows. 

So, for such flows the methods that we have discussed, so far the Mac Cormack method 

and the beam and warming method which are predicated on the linkage between density 

and the momentum equations through the equations of state. So, that kind of relation 

does not whole good for incompressible flows, because in the incompressible flow 

equations density does not come into picture it is a constant.  

It does not vary it is not there in the continuity equation and it can be factored out as we 

will see from the momentum equations. So, if density is not their then the linkage 

between continuity equations and the momentum equations through pressure density and 

equation of state is gone. In such a case we will not be able to use the density base 

methods that we have seen in incompressible flows. 
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We also saw that there are special method that have been developed and we saw these 

things as artificial compressibility method, stream function vorticity method and pressure 

equation method these are the ones that we are going to learn in this part of the module. 

And I would like to say at this point that module 4 is difficult it is not easy, whether it is 

the solution of the compressible flows or the incompressible flows and you have seen the 

difficultly with which a solution method like that incorporating the beam warming 



concept has been put together and the idea of this course is not for you to know every bit 

of it.  

It is more this lot more detail that would have to work out on your own, before you can 

fully understands all the details. Try cording it. So, the objective of module 4 is to expose 

you to the concepts and principles that have brought out in the solution of coupled 

equations. It is not to give you a recipe for the solution, and recipe for the solution 

requires lot more effect. 

So, it is the flow of ideas that we looking at in this rather than the specifics of writing 

codes in algorithms. So, that will come with may be a more effect from each of you for 

your own specific problem area. So, with that thing let us go to what we mean by the 

artificial compressibility method. 
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It is a method which was introduced by Chorin in 1967 and the basic idea is that we 

know that the linkage between the continuity equation and the momentum equations is 

not there. So, we can introduce artificially such kind of linkage. For example, we can 

write the continuity equation as d rho star by dou t partial of rho star with respect to time, 

plus del dot u equal to 0 and this is an equation this is not which is not correct for 

incompressible flows because there is no density here.  



And this density is not the density that we normally have for say water or air and those 

kinds of things this is a fictitious density it is brought in to create a linkage a bridge 

between the continuity equation and the momentum equations. How that bridge is built is 

shown here, we have dou rho star by dou t plus del dot u equal to 0. You define the rho 

star as p pressure divided by beta square, where beta which is missing here is the pseudo 

compressibility factor and for a given value of beta, if you know rho star you can get P. 

So, beta is a constant. So, if you substitute this expression here you are rewriting the 

continuity equation in this way. So, it becomes one by beta square dou p by dou t plus 

del dot u equal to 0. 

And the momentum equation is written as dou u by dou t plus del dot u u equal to minus 

one by rho del rho del p plus mu by rho times del square u. Now, these are the equations 

that you are solving and we would like to keep in mind here, that in this form rho are the 

two densities and u here is a vector. So, this is the vector equation this is a dyadic 

product, this actually 3 equations, for the x momentum equation, y momentum equation 

and z momentum equation. So, we have to keep that in mind, but it is written in a 

compact notation in the vector form like this.  

When you look at this equation are these equations correct? They are not correct for 

incompressible flow? Because of this term here one by beta square dou p by dou t. So, 

that is something that we have artificially introduced, but assuming that this is we can 

now see the how we can proceed with the solution, we solve the continuity equation for p 

it is like the previous continuity equation where you have density variation dou rho by 

dou t. 

So, in a similar way you can solve this equation for p, or we can solve this equation for 

rho star and then once we have rho star we can get a p provided we, we have beta. So, we 

can solve this for p here or solve this for rho use this to get p and substitute that p in this 

and here we have an equation for u x momentum equation or y momentum equation in 

which pressure is no longer and unknown thing. It is already deduced from your 

continuity equation.  

So, by rewriting the equations in this way through the addition of this artificial 

compressibility term here, we are creating a method of finding p and putting in that in the 

momentum equation. So, that when we get to the momentum equations it is no longer 



and a nuisance variable it is say non variable and it varies from point to point because it 

is given by this equation here. So, this makes pressure of function of x y z t and that 

variation is obtained from this equation. 

So, that same variation is put here to get u. So, these equations can be solved using the 

methods that we have discussed in the previous part of the module 4. That enables us to 

extend those methods here, but when you look at these equations there is a problem in 

the sense that these are not correct, but these are correct for steady flow conditions 

because under steady flow conditions, any variation with respect to 0 goes to 0.  

So, this term will go to 0 and this term will go to 0. You have del dot u equal to 0 plus 

del dot u u equal to minus one by rho del p plus mu by rho del square u. So, the steady 

state form of these equations is the same as the steady state form of the 2 Navier stokes 

equations with the true density and two true properties. So, under steady state conditions 

these equations can be considered to be accurate. So, this provides us a means of getting 

a steady state solution, even for incompressible flow using compressible flow methods 

through the use of this artificial compressibility here. 

So, we solve these equations with appropriate initial conditions and boundary conditions. 

Then much forward in time and if we hold the boundary conditions steady unchanging 

with respect to time. Eventually under most cases we accept to reach a steady condition. 

So, there may be some unsteady periodic kind of flows which may be coming through, 

but if you are looking at flow which is going to be steady and if you can drive this 

equations to steady state where the contribution of these time dependent terms becomes 

negligible then, we have a velocity field and pressure field which satisfies the steady 

form of the momentum equation. The continuity equation and.  

So, you have velocity field which satisfies this equation and this equation and pressure 

which is also coming from these two equations. So, we will be able to say that the steady 

state solution must be the steady state solution of the 2 Navier strokes equation for 

incompressible flow although we have got into the steady state using methods which are 

not fully correct. So, the transient solution that we getting here is not dependable it is not 

correct. 

But the steady solution is correct and these equations can be used for 3-dimensional 

flows, because we have written here in the vector form and you have a this de l dot u will 



become equal to dou u by dou x plus dou v by dou y plus dou w by dou z and these here 

you will have 3 equations x momentum, y momentum, z momentum equation in which 

the same pressure which is coming out to this equation is used. So, there is no difficultly 

in extending this to 3-dimensional flows the only thing is that it is correct only when you 

are considering the steady state solution.  

If your numerical solution does not reach a steady state or if the solution that you are 

looking for is not the steady state solution, but transient solution then, you cannot use 

this method. But if you are looking at a steady flow the steady flow solution of Navier 

strokes equation for incompressible flow. Then this method can be used and in order to 

use this method we need to fix a value of beta without beta being specified this cannot be 

solved. 

What value of beta can be used this formulation here rho star as p by beta square and all 

that will imply pseudo speed of sound which is given by square root of u square plus beta 

square. So, we call it as where u is the characteristic flow velocity for example, the 

average speed or average speed in a duct flow or the mean something like the u infinity 

in the case of a flow over external bodies, external flow over bodies. So, free stream 

velocity that is what it is. So, free stream velocity.  

The characteristic velocity square plus beta square and square root of that is the pseudo 

speed of sound and we must make sure that this is reasonable and based on a some 

studies of sensitivity and all that Chang and Kwak suggested that beta should be taken in 

such a way that beta square by reference velocity square is at the order of 5 to 10 for duct 

flows. So, if you are looking at flow through a duct which is incompressible and if you 

know what is the estimated average velocity then, you choose beta such that beta square 

is 5 to 10 times reference square where reference velocity square. So, that gives you a 

velocity value of beta here and then that completes the specification the problem. 

In case of external flows at high Reynolds numbers the value of beta is not so sensitive 

and you can take reasonable values for this and you will have a complete formulation of 

the problem here. So, the artificial compressibility method it tries to extend known 

method. Known and successful methods, which have been developed for compressible 

flows to the solution of incompressible flows at the same time the extension is such that 

the method will not give us time accurate transient solution.  



So, when we say time accurate transient solution, we are starting with some initial 

condition because a transient flow that we are solving and so, for a initial condition is 

fictitious, the transient is fictitious. What is true is the steady state solution. So, when that 

is for you, then you can use this method and this method can be used for 3-dimensional 

flows, also and it has been used in for those kind flows and this is one specific approach 

there is a different philosophy in the stream function vorticity method. 
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The idea here is that that since pressure is the nuisance variable can we eliminate 

pressure from the Navier strokes equations. 

So, it is possible under certain cases, and let us considers the case of 2-D Cartesian 

coordinates 2-D meaning two-dimensional flow Cartesian. So, we looking at two 

dimensional flows in which u and v are the non 0 velocities, and double u is 0 

everywhere which makes it a 2-D flow. For this the governing equation in Cartesian 

coordinates we can write as dou u by dou x plus dou v by dou y equal to 0, which is a 

continuity equation will call this as equation a here the x momentum equation. We have 

written down the full equation here in the expanded for us to become familiar with it.  

So, you have dou u by dou t dou by dou x of u square plus dou by dou y of u v equal to 

minus one by rho dou p by dou x plus mu by rho dou square u by dou x square plus dou 

square u by dou x square. Since we are looking at incompressible constant property flow, 

the second coefficient of viscosity term does not appear it is usually it is something plus 



lambda times dou u k by dou x k and dou u k by dou x k equal to 0 here. So, the second 

quotient term goes to 0 and this is the equation here. 

Since we are looking at constant property, constant density, gravity does not come into 

picture it as no way of influencing the velocity field. So, we can subsume the pressure 

here or we can simply neglect it. The y momentum equation is dou v by dou t plus dou 

by dou x of u v plus dou by dou y of v square equal to minus 1 by rho dou p by dou y 

plus mu by rho times dou square v by dou x square plus dou square by by dou y square. 

So, you have equation a, b and c. So, we introduce a variable called stream function you 

must have heard about this in your fluid mechanics courses.  

Lines of constant stream function values are the stream lines and stream lines are such 

that flow cannot cross through this stream lines. So, if you have a stream tube then, the 

flow that is inside will come out of the one of the end of tube it cannot go through the 

walls the fictitious walls which makes it a stream tube. I mean refer you to standard 

books of a fluid mechanics to learn more about the stream function that the stream 

function is defined for the 2-D Cartesian in case with x and y as the coordinate directions 

of interest. 

We can define u as dou psi by dou dou y and v as minus dou psi by dou x where psi is a 

stream function and we can introduce another variable vorticity, which is given by 

omega a which is the vorticity equal to del cross u. In the case of 2-D flow we are 

interested in the z component the vorticity and that is given by dou v by dou x minus dou 

u by dou y. Now, using these two variables that are the stream function and vorticity in 

the z direction it is possible to rewrite these equations, the 3 equations into a set of two 

equations and how do we do that we can eliminate pressure from these two equations by 

taking the curl of the momentum equation.  

So, curl of the momentum equation is a fancy way of a saying it is a mathematical way 

of saying this, but what we are meaning is that by evaluating dou by dou y of this 

equation dou by dou x of this equation. Every time in this equation is done through this 

corresponding operator. So, you write this as dou by dou y of dou u by dout t plus dou by 

dou y of dou by dou x of u square plus dou by dou y of dou of u v by dou y equal to 

minus dou by dou y of one by rho dou p by dou x all that kind of thing.  



So, every before every one of these terms, you put the dou by dou y operator and 

similarly this and then you can go through some algebraic manipulations and finally, you 

can simplify and get a this particular equation here and we also make use of this 

definition of omega z to do this and finally, we get an equation like this. If we examine 

this equation it is dou by dou t of omega z omega z is a variable it is a function of x y and 

t and plus u times dou w by dou z dou w dou omega z by dou x plus v times dou omega z 

by dou y equal to mu by rho times dou square omega z by dou x square plus dou square 

omega z by dou y square and what is familiar about this equation this is like. 

A regular scalar transport equation if you put omega z equal to phi you get a scalar 

transport equation. So, this dou phi by dou t plus u dou phi by dou x plus v dou phi by 

dou z equal to mu by rho or some diffusivity times dou square phi by dou x square plus 

dou square phi by dou y square. So, in that sense it is like a regular transport equation, 

and we already have developed some templates for solution of this type equation. So, the 

solution of this does not pose any specific problem accept for the non-linearity and the 

coupling that comes with this here.  

We are trying to eliminate p and we can completely eliminate u by substituting this 

definition for u and this definition for v ones we do that we get this equation here. So, in 

this equation we see there is no u, there is no v, there is no p and it is obtained from 

rewriting the momentum equations and we make also use of a the continuity equation to 

come up to this here is an equation and this as omega z as a variable and size also 

variable. 

So, we cannot have one equation and 2 variables. So, we construct another equation from 

the definition of this. So, we have omega z equal to dou v by dou x minus dou u by dou y 

and we know that v is given by this and u is given by this. So, if you substitute this you 

get dou by dou x of minus dou psi by dou y and you substitute this here, you get minus 

dou by dou y of dou psi by dou y. So, substituting that we can get a different expect 

different equations dou square psi by dou x square plus dou square psi by dou y square 

equal to minus omega z. 
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What is familiar about this equation? These also almost like the scalar transport equation 

except that we do not have the time dependent thing. So, this actually a Poisson equation 

with a right hand side which is a variable. Now, if we look at this equation and the 

previous equation here we have two equations involving two variables psi and omega z 

here. So, if we solve the previous equation for omega z and then, substitute that on the 

right hand side we solve for psi here we put back the psi in this thing here and then again 

solve this for omega z and then we come back here, and then we put this and then we can 

get a new value of psi. 

So, we can solve these things together and then we can get a solution for psi and omega z 

and the psi and omega z; obviously, are obtained from a discretization in terms of psi and 

omega z and all that and we write finite difference approximations and for this term this 

term and. So, on and. So, using the regular c f d procedure we can get psi as a function of 

x and y that is we get psi i j and omega z i j.  

So, we and ones we know psi i j you can take the y derivative and get u and similarly we 

take minus of x derivative minus dou psi by dou x will give us v. So, we can reconstruct 

the velocity field by solving this equation a Poisson equation for psi, this stream function 

and a scalar transport equation for the scalar which is the z component of the vorticity 

vector. So, by doing this we can get directly the velocity field without ever solving for 

pressure. 



If you want to know pressure then after solving for velocities after solving for u and v. 

FWe can solve a Possion equation for pressure which is obtained by taking the 

divergence of the momentum equation. Earlier we took curl to eliminate pressure and to 

derive an equation for pressure we take the divergence of the momentum equation. So, 

that is we take dou by dou x of b plus dou by dou y of c where; b and c are the x 

momentum and y momentum equations.  

If you do this if you do that and then if you go through manipulations and all that you 

can finally, derive this equation for pressure. So, dou square p by dou x square plus dou 

square p by dou y square equal to 2 rho dou u by dou x times dou v by dou y minus dou 

u by dou y times dou v by dou x. What is good about this equation is it is like this 

equation, it is like a Possion equation and by the time you have come to solution of p you 

already know u and v. So, you can evaluate these things you can evaluate the right hand 

side, and then you use finite difference approximation for this and this and you can get a 

pentadiagonal matrix for p and then you can solve it to get a pressure. 

So, in this way we can evaluate the velocity field u v and then p by solving a different set 

of equations. Which are essentially the same equations as the governing equations 

because these have not been derived with by making any further assumption, these are 

the exact equations, but written in a different way. So, as to enable a solution without 

having to worry about the pressure now the difficultly it is not as simple as it is sounds it 

is difficult and one of the difficulties is the boundary conditions for these for the solution 

of this a Poisson equation and this equation is not in terms of velocities.  

Because, now only we have some velocity boundary conditions the no slip condition 

uniform velocity condition and the normal variant equal to 0. Those kind of things are 

known, but now we have to visualise what kind of boundary conditions will be there for 

psi which is given by this equation here, you may know velocity u and velocity v, but 

how can you construct a boundary condition for psi on a given boundary and similarly 

these things and one as to spent time and thought on rewriting the known boundary 

conditions. In terms of the boundary conditions that appear in terms of boundary 

condition for psi and a omega z. 

So, in this context we introduce notion of primitive variables u v p are known as 

primitive variables. And stream function vorticity are the derived variables the new 



variables sophisticated variables, which enable this solution here. So, boundary 

conditions one needs to spent time to translate the known velocity and pressure boundary 

conditions into boundary conditions for psi and omega and another disadvantage is that 

this will work only for 2-D because, only for 2-D we can come up with definition of 

stream function which is given by this and this definition here is valid only for 2-D two d 

Cartesian coordinates in which u and v are non 0 and double u 0 if you go to a different 

2-D coordinate 2-D problem for example, axisymmetric spherical coordinates with r and 

theta being the coordinate directions in which the flow variables change. So, I am 

looking at a case where u r the radial component of velocity and u theta is non 0, but u z 

is 0. 

So, if you looking at that kind of 2-D case which is an axisymmetric 2-D case in 

spherical coordinates then, the stream function is defined in this way the 2 non 0 

velocities, u r and u theta are linked to gradients derivatives of the stream function. In 

this particular way here we just define u is dou psi by dou y and v as minus dou psi by 

dou x and here you have to derive it like this. So, that ones you substitute into the 2-D 

continuity equation for this flow we have we can guarantee that the continuity equation 

is satisfied.  

For example, here if you substitute this you get dou square psi by d x squares and if you 

substitute a dou square psi by dou x dou y here. If you substitute this one in this you get 

minus dou square psi by dou x dou y. So, dou square psi by dou x dou y minus dou 

square psi by dou x dou y will be equal to 0. So, the definition of stream function such 

that, the continuity equation is satisfied and if you want to do the same thing for 

axisymmetric spherical coordinates, you have to define u r and u theta in this way in 

order to satisfy the corresponding continuity equation in r theta spherical coordinate 

system to be valid. 

So, the definition of stream function changes with coordinate system. So, if you write the 

stream function definition properly then, it is possible to solve for the velocity field and 

pressure field without having to explicitly solve for pressure write in the beginning we 

can get u and v without having to solve for pressure. But only applicability only a 

condition is that it is valid only for 2-D flows and not with 3 d flows.  



So, in the next lecture we look at a method which is applicable for time dependent and 3-

D flows and that is a pressure equation method. 


