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Lecture - 32 

Analysis of Generic 1-d scalar transport equation 

 

We now know how to do the Von Neumann Stability analysis, and from which we have 

looked at how to evaluate the stability conditions for a one dimensional wave equation 

which is one part of the general scalar transport equation. Now we are going to look at 

the entire scalar transport equation, but for simplicity of analysis we will consider the 

one dimensional aspect only, one dimensional form only. And we will consider a linear 

version of this. 
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Here in equation 1 here, we have constant property, constant given velocity form of the 

one dimensional scalar transport equation which is given as dou phi by dot t plus u times 

dou phi by dou x equal to sigma by rho which is the essentially the kinematic diffusivity 

dou square phi by dou x square. So, here is a scalar transport equation in one 

dimensional form in space sense, you have only dou x here not dou by dou z. We also 

have no source terms and we are taking the diffusivity here and the velocity here to be 



constants, or this can be considered as linearized values of velocity and diffusivity in 

case there are changing with space and time. 

So, this is linearized constant property one dimensional scalar transport equation. It is 

also known as the viscous burgers equation, and it has contribution to 5 variations 

coming both from the advective term which we have seen earlier and the diffusive term. 

In a way this is mimicking the basic transport equation that we are try to solve in a navier 

stokes equations.  

Let us consider the simplest possible scheme for this, this FTCS explicit scheme 

therefore, we discretize the time derivative as a forward in time and the space derivatives 

dou phi by dou x here and dou square phi by dou x square using center scheme and we 

take the explicit form of this therefore, we write dou phi by dou t s phi i n plus one minus 

phi i n divide by delta t. And this is done using central scheme u is constant, so we write 

it as u times phi i plus n minus phi i minus 1 n divide by 2 delta x. This n making it 

explicit method and this equal to gamma by rho which is constant times a central 

difference explicit formula of this is phi i plus 1 n minus 2 phi i n plus phi i minus 1 n 

divide by delta x square. 

So, this is a discretized form of the one dimensional constant property scalar transport 

equation including the convective derivative and the diffusive component terms in the 

governing equation. For simplicity we can put here you have delta t terms delta x and 

then you have u here. So, we have courant number term which is coming from the 

advection term part here. And then similarly delta t times gamma by rho times divide by 

delta x square here. So, that gives rise to something like a diffusivity term which is 

coming here. So, we can put this as another non dimensional parameter beta.  

So, we put beta equal to gamma delta t by rho delta x square. So, just taking this delta t 

here and we put courant numbers sigma equal to u delta t by delta x and once you put 

this you can rewrite this as phi i n plus 1 equal to beta plus sigma by 2 times phi i minus 

1 n you have i minus 1 n coming from courant number here. And then you also have the 

beta term contributing to this, so beta plus when you take it to the right hand side you get 



this has plus sigma by 2. And 1 minus 2 beta times phi i n plus beta minus sigma by 2 phi 

i plus 1 again this is n here, n is missing. 

And for this scheme we can go through the conventional one dimension stability analysis 

as we have seen just now, we can substitute d equal to d i n plus 1 and then we can put n 

i n plus 1, we can get the error evaluation equation and then we can investigate the nth 

wave component and we can get in amplification factor and that amplification factor 

looks like this. So, you have g equal to 1 plus 2 beta times cos phi is what we have called 

it earlier cos phi minus 1 minus j sigma time sin phi.  

So, we can evaluate the variation of g for different values of phi because we know phi 

goes from 0 to pi as the wave number goes from 0 up to capital m in discreates steps, for 

given value of sigma and for a given value of beta you have a computable value of g 

from this expression here because of the j term here this is an imaginary number. So, we 

can plot is on imaginary component here. And then, the real component here and we can 

get a value of g here as we change phi will be traversing down this route, down in this 

form here and as we change beta and sigma again the value of g changes. 

(Refer Slide Time: 06:27) 

 



Now we can see what would happened for different values of beta and sigma here and 

here we considering beta and sigma pair to be having 0.45 and 0.75 and 0.25 and 0.95. 

So, the green one is the case where you have 0.45 of beta and 0.75 of sigma. If you 

consider just this scheme with only the advection term with zero diffusion term we have 

seen that FTCS explicit this unconditionally unstable. Similarly, if you neglect that 

advective component and if you just take the diffusive component here, and then we put 

dou phi by dou t equal to sigma by rho dou square phi by dou x square we can show 

through one stability analysis that that scheme will be unstable for beta greater than 0.5. 

So, here we are considering the beta 0.45 and sigma 0.75 which is less than 1 and this is 

less than half here. So, for that value of g for different values of 5 you have an ellipse 

here which lies entirely in the unit circle of 1. That means, that this particular 

combination here is good, it is stable because if a no point we have g greater than 1. But 

if you take another set of values both of which satisfy the individual condition of beta 

less than 0.5 and sigma less than 1 here, you see that if you substitute these values in this 

expression for different values of 5 and then you draw the corresponding g here, you see 

that g is sometimes going beyond sigma equal to 1.  

The true condition for this stability of this is not sigma less than 1 and beta less than half 

which are individually coming from these equations it is that sigma squares should be 

less than 2 beta when these condition is satisfied then we get stability. If it is not satisfied 

we get unstability as we will see form here. So, this condition is satisfying that sigma 

square less than 2 beta, but this is not satisfying that condition here. 

So, that is a kind of analysis we can write and what we can also see from here is that 

although the FTCS explicit scheme is unconditionally unstable for just the advection 

term, the presents of the diffusion term has made it conditionally stable it is now stable 

conditionally for sigma square less than two beta, and that is in that sense the addition of 

this term has made the scheme conditionally stable from unconditionally unstable.  

So, different terms contribute in different way and they diffusion term is actually 

surprising some of the instability under certain conditions. So, what we have been able to 

establish from this analysis is that when we have a scalar transport equation, we can find 



a conditional stable solution under certain conditions, under the condition of sigma 

square less than 2 beta. If this condition is satisfied we can get a stable scheme and we 

can also show that this scheme is consistent, so we can expect convergence with this 

thing. But with this FTCS explicit scheme for this equation here, there are some 

difficulties that are although we seem to be getting a stable solution. 
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The solution itself can give us to oscillatory solution, oscillations and these oscillations 

are in the special direction not with the respect to temporal thing, under certain 

conditions that is if you define a Peclet number and mesh Peclet number as rho u delta x 

divide by sigma where sigma is diffusivity and u is obviously the velocity and dou is the 

density. 

So, if certain values of Peclet number which lie between 2 by sigma will give raise to 

oscillations. 
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So, that is what we can see here these are an initial square pulse lying between 0.4 and 

0.5 at time equal to 0 with a value of 1 here and 0 otherwise, that is the initial condition. 

We are going to look at how this pulse is transmitted in the x direction at the velocity u 

while it is also diffusing. So, the evaluation of this square pulse is subject to this equation 

here. So, it will both be convicted in the positive x direction and is also diffusing with a 

diffusivity of this.  

Now, what kind of solution we get if we use the FTCS explicit scheme within the 

stability bounds. So, that particular scheme now has 3 parameters beta, sigma and Peclet 

number which a combination of these two here, and we are looking at the specific case of 

Peclet number being less than 2, greater than 2 and greater than 2 by sigma. So, we have 

said that if Peclet number is greater than 2 by sigma its unstable and if it is less than 2 we 

get a stable solution and if it somewhere in between it we get some special kind of 

character. And that is what we are looking here. 

In this particular case we have beta as 0.45 and sigma as 0.8775. So, this these two 

values such by the condition of sigma square less than 2 beta and we also have a 

corresponding derived value of Peclet number as 1.95 and this also less than 2. 



So, under these conditions we should be getting a stable solution and we also see this 

pulse at 0.2, 0.5, 1 second where it is and we can see is being convicted and we are 

getting a smooth solution. And part of the smooth solution is obviously from the 

diffusion. So, we can see that this square pulse which is like this is moving in the 

positive x direction and with a speed which is matching with the delta t variation and is 

also diffusing giving wise to that smooth and variation. So, it looks good.  

But if you were to choose a different value of sigma which still satisfies the sigma square 

less than 2 beta, this is satisfying the condition of sigma square less than 2 beta that now 

the Peclet number is likely greater than 2, it is 2.1. And what we see here is a solution 

which is somewhat strange, it is beginning greater than 1, it is in a way anti diffusing. It 

should be beginnings smooth like this, but is beginning greater than 1 here and here it is 

less than 1, less than 0 here and greater than 1. So, it is giving rise to these, but it is not 

actually giving rise to any kind of unstable solution.  

We can see a pulse which is still at the same location slightly more distracted than this 

case. So, its stable, the variation is growing with time, but it is still growing it is still 

retaining that overall form that is expected and certainly something like this is not 

desirable because if u is actually representing some mass fraction then we are getting 

negative values of the mass fraction and that is undesirable. And we may be getting 

greater than 1 here and this solution is not physically acceptable.  

A stable solution can give raise to this kind of unphysical solutions in certain cases and 

when we choose a different value of sigma such that you are Peclet number is greater 

than 2.2 we get unstable solution. And this is different from this only in the small change 

in sigma here from 0.945 to 0.99 we change it. That also changes the Peclet number from 

2.1 to 2.2 and we get like this is truly an unstable solution where as this is not unstable 

solution. So, we can clearly see the difference here.  

And small changes in the value of sigma here violating that sigma square less than 2 beta 

condition are giving raise to unstable solutions here. But as long as we maintain that 

sigma square less than 2 beta solutions, we are getting good solution for Peclet number 

less than 2 and for Peclet number greater than 2, but less than 2 by sigma we are getting 



this undesirable solution here. In that sense this is not such a good thing and how to 

remove this undesirable solution, while retaining the stability even if we have stability 

here we still have a physically undesirable variation here and that is not acceptable. And 

this variation can be removed in two different ways here. 
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So, here we have two ways of eliminating these oscillations one is reducing the mesh 

Peclet number in such a way that its much less than that 2 by sigma value and here is a 

case where Peclet number has been reduced to 1.05. And the solution is obtained with the 

same beta value, but sigma is reduced to 0.4725, so that we have reduced Peclet value 

and at the same time almost 0.2, 0.5, 0.999, it is about one second. We now get an 

oscillation free solution. 

And another way is to use upwind differencing scheme for the advection term. So, what 

is this upwind differencing scheme and upwind differencing means that the special 

derivative related to the advection term dou u by dou x is written has phi i n minus phi i 

minus 1 divide by delta x, when you have u greater than 0. So, when u is greater than 0, 

this pulse is expected to move in this direction, when the pulse is moving in the positive 

x direction we use backward differencing for this for the dou phi by dou x.  



And when use negative, that it is expect to in this direction we make use of forward 

differencing for dou dou phi by dou x and we write this has i phi i plus 1 minus phi i by 

delta x. So, depending on whether the pulse is whether u the velocity associated with the 

advection term is in the downstream direction or in the upstream direction we make use 

of the backward differencing or forward differencing. 

So, essentially what this is saying is that the value here is coming from upstream 

direction, so it is in the direction of wind. In the direction of wind is the solution that is 

being brought in here. So, the difference between the previous term and this term is this 

is phi i minus phi i minus 1 or phi i plus 1 minus phi i divide by delta x therefore, this is 

first order accurate scheme. And in the other case it is a central differencing, therefore, 

this is second order accurate scheme.  

Once you substitute this backward differencing scheme assuming u to the positive we get 

in the equation like this. So, the diffusion term is unchanged and the time derivative is 

unchanged it is only this one which is change from central differencing to backward 

differencing. So, we can call this as forward in time, backward in space, and central in 

space. So, FTCS kind of approximation with the backward in space for the advection 

term with positive u. 

So, with this we can rewrite this phi i n plus 1 as beta phi i minus 1 plus 1 minus 2 beta 

minus 1 times phi i n n beta plus sigma times phi i plus 1 n. In this both beta and sigma 

are positive so that means, that this term has a positive value and this term has a positive 

value and we can do and 1 minus stability analysis. And show that this particular scheme 

is stable for 2 beta plus sigma less than 1 so that means, that 2 beta plus sigma is always 

less than 1 for stability and once you substitute this, 1 minus 2 beta minus sigma is also a 

positive quantity. So, you have phi i n plus 1 is given as a positive coefficient times this 

plus another positive coefficient times this plus another coefficient positive coefficient 

times this.  

So, when you have an expression like this where phi i n plus 1 is given in terms of 

positive coefficients times the cell values like this, when all the coefficients are always 

positive we can be sure that we want get an oscillatory solution, where an oscillation 



solution is not expected. So, we can get an oscillation free solution for 2 beta less than 

plus sigma less than 2. So, that is what we are seeing here. 

In this particular case 0.468 and 0.24 is beta under this and we have a Peclet number 

almost close to 2. So, we have the condition of sigma plus 2 betas being less than 1, just 

about less than 1.468 plus two times, as 0.48, it is about 0.95. So, it is slightly less than 1. 

So, we can expect a stable solution with this and that is what we are actually got. We are 

getting stable solution which is moving forward which is also diffusing. So, we can 

suppress these kind of on stable oscillations that we getting here under undesirable 

oscillations under stable conditions can be eliminated by either reducing the Peclet 

number, mesh Peclet number or by using upwinding differencing.  

In both cases we are getting solution, but even here we can see that the solution is not 

exactly the same at one second, this seems be much more diffusive than this. And when 

you compare this with the previous solution here this seems to be better than this scheme 

here because the solution that we are getting at one second, that is 0 all they up to this 

and then pulse and then again 0 here.  

If you want to compare this with this thing here, the pulse is about the same location the 

peak is about the same. But it is diffused over a larger x value here, and this is diffused 

even over even larger value and you can see that corresponding the peak value is less 

than 0.5, it is slightly more than 0.5 and here its much closer to 1. So, you have much 

more diffusion in this case, in this case. We are gaining on stability and smooth solution 

at the cost of increased diffusion. 



(Refer Slide Time: 23:40) 

 

This is something that we have with numerical schemes. With numerical schemes we 

have what is known as diffusion error and dispersion error diffusion error is for example, 

in this particular case this is a pulse which should have come to at 1.5 meters per second 

it should have come at and be a sharp step down exactly like this. But at diffusive 

solution actually gives you a smooth solution like this. Instead of being sharp step down 

is diffused over much larger length here. In this case all away from 1.3 to 1.7 it has a non 

zero value. It has less than 1 value. A dispersive solution produces these oscillations like 

here, we can see small waviness that is there and this waviness may increase may go 

backwards here with time as its moving forward here. So, this is a characteristic 

dispersion error.  

Numerical errors are of the diffusion type or the dispersion type or a combination of both 

and this is something that we should keep in mind. If you want to reduce the dispersion 

error then we could be introducing this diffusive error and that is what we are seeing here 

we wanted to reduce this dispersion error here and in the co process we tried reducing 

the mesh Peclet number, we got more diffusion. And we tried upwinding differencing to 

eliminate the translations and then we got even more diffusive thing.  



So, we have to balance the amount of stability to reduce dispersion errors with the 

additional diffusivity that may be introducing, and this is where in order to capture these 

sharp gradients that are common in compressible flows at high speeds under supersonic 

conditions like in shock waves you have these kinds of gradients. In order to capture this 

gradient well we need to have better differencing schemes than highly diffusive FTBS 

scheme or dispersive FTCS schemes. And people are come up with concept of a total 

variation dimension TVD schemes, and ENO essentially non oscillatory schemes like 

that to get a solution which is as close to a square pulse as possible for this type of thing. 

In which there is very little diffusion and no dispersion. So, it is an essentially non 

oscillator solution with very little diffusivity much less than what we get with the simple 

upwinding approach or with this highly diffusive approach that we are seeing here. So, 

the idea there is to see under what conditions a dispersion solution is produced and how 

much diffusion we can add we need to add in order to suppress that oscillation there. So, 

it is a targeted and metered amount of diffusivity is put in there.  

With those kind of things it is possible to get a solution which looks almost like this 

square pulse or like any other expected shape without introducing too much of diffusion 

dispersion error. But that is not part of the course here this is only an introductory course. 

It is discussed in books like the Book by Harsh, is one such book which discusses this 

TVD schemes extensively and that will be of interest to people dealing with 

comprehensive flows and where shocks may be expected. In general subsonic flows 

inside internal bodies probably we do not get these sharp gradients and we do not to have 

go for such schemes. 

We can probably deal with second order scheme and we can get fairly accurate resolution 

of the gradient for us to estimate the heat fluxes and all those things. What we would like 

to mention at this point is that when we have first order scheme, we can have huge 

diffusion we can have large amount of diffusion and that is way it is preferred to have 

second order schemes. Second order schemes introduce a dispersion error and if that 

dispersion error is likely to be affecting the solution we have to care to minimize it.  



So, that is about diffusion dispersion errors and about the basic ideas as to how we can 

get a satisfactory solution for a one dimensional scalar transport equation. So, we have 

got a template for consistent, stable and oscillation free solution. With this scheme we 

can go in for the solution of Navier-stokes equation and that is what we are going to do 

in the next module. 


