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Tutorial on Stability Analysis 

 

In today's lecture we are going to do a stability analysis, and today's lecture will be in the 

form of a tutorial we take a specific problem and then try to do it on the board. So, that 

you can follow closely what I am doing and then you can replicate it for other problems 

of your interest today’s problem is to do a stability analysis for the same one-dimensional 

wave equation which we have been considering earlier, but with an implicit scheme. So, 

we are going to do FTCA scheme for the 1-dimensional linear wave equation and what 

you mean by FTCS scheme is forward in time, central in space, but an implicit scheme 

and we will try to do the von Neumann stability analysis for this and investigate the 

stability conditions for this particular case. 
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So, it is a tutorial on von Neumann stability analysis, the equation that we take is duo u 

by duo t plus a duo u by duo x equal to 0. This is on a domain 0 less than x less than 

capital l and with uniform grid space you know delta x, with periodic boundary 



conditions. So, that and a is constant. Therefore, we have a linear equation with periodic 

boundary conditions, uniform grid spacing and 1-dimensional form we can apply the von 

Neumann stability analysis for this. 

And we are going to consider the forward in time, central in space, implicit scheme 

discretization. So, that we can write this as u i n plus 1 minus u i n by delta t, is the 

forward discretization forward differencing for the time derivative, plus a time central in 

space. So, this will be u i plus 1 minus u i minus 1 by 2 delta x. Since it is implicit the 

space derivative is evaluated at n plus 1 and this is equal to 0. So, this is our 

discretization scheme and we can also write this as we can take this delta t this side and 

get an expressive formula for this. 

So, when we have a scheme like this 1 and we want to investigate the stability using the 

von stability analysis. We consider d to be the exact solution, and n to be the numerically 

completed solution. And x epsilon to be the error and each of these is a function of both x 

and t because we have this u here is a function of x and t therefore, we index we denote 

the space x by the space index i and the time by the time index superscript n here, and 

this will be the exact solution at time of x t and this is also at time of x and t and this is at 

time of x and t. And as the solution progresses d also changes d i n is changing and n i n 

is changing and epsilon i n is changing and we say that the numerical solution is the 

exact solution plus an error and therefore, we can say that n i n, is d i n like this. And 

what this means is that we have an exact solution plus an error which is coming, which is 

changing at a particular location with time because as n changes and if the scheme is 

such that this error can accumulate.  

Then if we run enough number of this times test the accumulated error may become 

much bigger than this. So, as to give us an computed solution n, which does not look like 

d as long as epsilon is very small, n will be almost equal to d if epsilon is growing. Then 

after certain number of time steps epsilon will become large it will become. So, large that 

n will be more like error than like d, and that is what we would like to avoid. So, we 

would like to see under what conditions the error will grow and eventually take us to a 

situation where this error dominates the exact solution and therefore, the completed 

solution is no longer like the exact solution. 



So, this is the stability idea and we are going to define an amplification factor, which is 

error at a particular special occasion at n plus 1 times divided by error at the same special 

occasion at n and if the amplitude of this, if mod g is less than 1 then, we can say that 

error will not grow, if it is greater than 1 we have possibility of the error increasing with 

time in magnitude and therefore, overwhelming the exact solution to give rise to a 

computed solution, which is no longer like the exact solution.  

So for g mod of g less than 1, we have stability, and mod of g, is greater than 1, we have 

instability and that is what we should be avoiding. So, under what conditions are this 

particular scheme stable is the situation that we would like to evaluate and for that for a 

linear initial value problem with periodic boundary conditions. We can make use of the 

von Nuemann analysis wherein we decompose the error that x of t into a sum of Fourier 

components and m varies from 0 to capital m and m is given by k m is given by m phi by 

l and m is 0, 1, 2 up to capital m where capital m is l by delta x. 
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So, these are the Fourier components these are the m capital m plus 1 number of Fourier 

components which are present in this series and each of this is a sinusoidal component 

with an amplitude and with a sinusoidal variation given by this exponential this function 

with j equal to square root of minus 1, and because we are looking at a liner equation the 



contribution of each of this Fourier components can be added at any time to give rise to 

the total error at a particular special occasion, at that particular temper location and 

because this super quotient principle is possible to look at the evolution of the error we 

can take any particular wave component and we try to investigate the stability condition. 

So, we look at the specific component mth wave component at location i m times of 

location n, and we write this as b m minus j k m at delta x, where k m is the 

corresponding wave number for this and because we are going to look at whether its 

going to increase with time. And we are going to take the ratio here, we can also write 

this as exponential of a n delta t exponential of j k m delta x here. 

So, that this is at time t and the error of the same component mth wave component at the 

same location at the next time step n plus 1 is therefore, given by exponential of a times. 

Now we have already used a here lets change, this it is easier as u naught in a way it is a 

linearised conviction term. So, we can retain this n plus 1 times delta t j k m delta x here 

and the ratio between the 2 is essentially for the mth wave component n plus 1 divided 

by the same component at the same location that at the mth time is now given by 

exponential of a delta t and therefore, if a is positive then this is going to be a positive 

quantity and if it is greater than 1 in magnitude then it is going to give raise to. 

So, we make we take this particular wave component and then we substitute that in our 

formula here starting with this and we can call this as equation 1 and the numerical value 

that we get here is obtained from this. So, we can say that equation 1 is satisfied. So, as 

to give rise to n i n plus 1 minus n i n divided by delta t plus u naught times n i plus 1 n 

plus 1 minus n i minus 1 n plus 1 divide by 2 delta x equal to 0. So, this is our second 

equation and we also know that d i n is an exact solution and we can also say that d i in 

plus 1 minus d i n divide by delta t plus u naught times d i plus 1 n plus 1 minus d i 

minus 1 n plus 1 by delta x is equal to 0 and that is equation number 3 here. We also have 

this expression and we can substitute this here and then we can get a fourth expression 

which is d i n plus 1 plus epsilon i n plus 1 is this quantity minus d i n plus d i n minus 

plus epsilon i n this whole thing divide by delta t plus u naught times this here which is d 

i plus 1 n plus 1 plus epsilon i plus 1 n plus 1 minus d i minus 1 n plus 1 plus epsilon i 

minus 1 n plus 1 this whole thing. So, this minus this whole thing divided by 2 delta x 

equal to 0. 



Now, we can club all these together and we will be getting this and this whole thing is 

equal to 0 and once we take out the d components. 
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We will have an error evaluation equation as epsilon i n plus 1 epsilon i n plus 1 minus 

epsilon i n divide by delta t plus u naught by 2 delta x times epsilon i plus 1 n plus 1 

minus epsilon i minus 1 n plus 1 equal to 0. So, we can now take this delta t here. So, 

that we have times delta t which is still equal to 0. And this can be written u naught delta 

t by delta x is (Refer Time: 15:59) number sigma. So, we can write this as epsilon i at n 

plus 1 minus epsilon i n plus sigma by 2 times epsilon i plus 1 n plus 1 minus epsilon i 

minus 1 n plus 1 equal to 0. So, this is the error equation here and then this error equation 

is decomposed into. So, many Fourier components and we look at the mth component of 

this here and therefore, we substitute this form into here and we can write this as the mth 

component will be will be exponential of a n plus 1 delta t exponential of j k m i delta x i 

think here i forgot to put i because this is at x this should be i times delta x. So, this is 

this is this term minus exponential of a n delta t exponential of j k m i delta x plus sigma 

by 2 times exponential of a n plus 1 times delta t exponential of j k m times i plus 1 delta 

x minus exponential of a n plus 1 delta t exponential of j k m i minus 1 delta x. So, this 

whole thing is equal to 0. 



So, this each of this term this whole equation is now divided by this term. So, that we 

have if we divide by this we get a delta t because, this and this will cancel out and n part 

will cancel out with this. And we get exponential of a delta t minus 1 plus sigma by 2 

here and here, a n delta t again will cancel out here leaving with this exponential of a 

delta t and similarly here exponential of a delta t will be there. So, we can write this as 

exponential of a delta t times here in this k m i delta x cancels out, we will have e j k m 

delta x minus here again this is already considered and i delta x will cancel out and we 

will have minus j k m delta x with the minus sign and this whole thing is equal to 0. So, 

we have now this equation is just a simplification of this in which we have substituted 

the mth wave component in the error propagation equation. 

 Here and the divided by this quantity in order to get g because this is precisely what our 

application factor is because this is epsilon i n plus 1 by plus epsilon i n and that gives us 

this. So, this is our g here. So, we can write this as g minus 1 plus sigma by 2 this is 

again g times e j 5 minus e minus j 5 equal to 0 where phi is equal to k m delta x and as 

we have mentioned earlier as k m changes as the wave number changes this phi will take 

values from 0 to phi. 

So, in that sense we can virtually take this phi to be a continuous function from 0 to phi 

even though it has discreet values. So, as delta x tends to smaller and smaller values 

capital m becomes larger and larger so; that means, if the number of steps taken to go 

from 0 to phi will increase and it becomes in the limiting case of delta x to 0 it becomes 

almost a continuous function of phi all the way from 0 to phi and we also have the 

relation like e j phi is cosine phi plus j sine phi and e minus j phi is cosine phi minus j 

sine phi here and. So, if you take this to this minus this you will be getting minus 2 j sine 

phi g minus 1 plus sigma by 2 times g times 2 j sine phi equal to 0 or g equal to 1 by. So, 

this 2 and this 2 will cancel out and. So, we get g times 1 plus sigma j sine phi minus 1 

equal to 0 or g equal to 1 by 1 plus j sigma sine phi this is our amplification factor. So, 

now, we have to investigate the conditions of under which g is going to be greater than 1. 
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So, we have g equal to 1 by 1 plus j sigma sine phi, and we can multiply and divide by 1 

minus j sigma sine phi. So, as to get 1 minus sigma j sine phi and we get 1 minus sigma 

square j square sine phi and j square is minus one. So, we get 1 plus sigma square sine 

square phi this is a real quantity and therefore, this is our g here. So, therefore, we can 

write this g as 1 minus j sigma sine phi by 1 plus sigma square sine square phi. And the 

complex conjugate g star will be this 1 plus j sigma sine phi divide by 1 plus sigma 

square sine square phi and we can write, the square of the modulus of g as g times g star 

and this is equal to 1 minus j sigma sine phi times 1 plus j sigma sine phi divide by 1 plus 

sigma square sine square phi whole square because, it is the same thing which is 

common and this again gives us 1 plus sigma square sine square phi. So therefore, it is 1 

plus sigma square sine square phi. 

So, this is square of the magnitude the numerator give us 1 plus sigma square sine square 

phi. So, we cancel with 1 of these and then we have this. And what we see is that this is 

always less than 1, in the special case where phi is equal to 0 of 180, then this equal to 1. 

Because sigma is u naught delta by delta t by delta x and we have sigma square here 

then, this is always less than or equal to 1 and therefore, it is always stable this is in 

contrast to the FTCS in the case of FTCS explicit where we put this as u i n plus n and u 

i minus 1 n here then we have seen that g in this case is equal to 1 minus j sigma sine phi 



and therefore, j star is 1 plus sigma j sine phi and therefore, the square of the modulus is 

g times g star and that is equal to 1 plus sigma square sine square phi and this is always 

greater than or equal to 1 except for the special case of phi equal to 0 or 180 this is 

greater than 1 so; that means, that this is always unstable. 

So, the same FTCS explicit version is always unstable, but the implicit version is always 

stable and this is something that we get usually when we go from stability from a 

stability point of view from explicit method to implicit method. There are explicit 

methods which are unconditionally stable just like this FTCS implicit. And there are 

explicit methods which are unconditionally unstable like this 1 here, but usually when an 

explicit method is conditionally stable or unstable the corresponding implicit method 

may prove is very likely to be to prove unconditionally stable. And therefore, when we 

go for an implicit method then we gain in terms of stability, and that is something that we 

would like to demonstrate. 

And I hope from this tutorial we have learnt the mechanics of how to do the von 

Neumann stability, analysis for a given discretization. So, we start with finding the error 

evaluation equation either this or this we saw this from the discretization. And then we 

investigate the stability of the mth wave component, by substituting the corresponding 

expression for epsilon i n s as epsilon as a n delta t, times epsilon j k m i delta x here and 

then we find the amplification factor and from the amplification factor, we find the 

magnitude and we see under what conditions the magnitude is greater than 1. 

And if the magnitude is greater than 1 for certain conditions then it is conditionally stable 

or conditionally unstable. If for all conditions if the magnitude is greater than 1 then, it is 

always unstable and if there are if for all conditions of sigma and phi and all that if it is 

stable if it is less than 1 it is always stable. In the next class we are going to look at some 

more schemes and then we are going to look at the stability analysis, and we will move 

on to the 1 dimensional scalar transport equations and look at the stability. 


