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Lecture – 30 

Properties of Numerical Schemes: Stability analysis 

 

In this lecture we look at the second important property, which is necessary for us to 

have the check for converges, which is the stability we would like to formulate in this 

lecture the problem of stability, that is the definition of stability and what is what do we 

mathematically mean by stability? And we can also we will also learn to see how we can 

make an analysis for stability of a given discretization scheme. 
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So, when we talk about stability we are talking about the error between the computed 

solution and the exact solution of the discretized equation. And we are talking about this 

difference between the two, between the exact solution of the discretized equation and 

the computed solution of the discretized equation, that this error should not be amplified 

as we much forward in time. Because we are accumulating errors from the previous 

times steps and we are also gathering errors from the approximations made at of the 

derivatives spatial derivatives. 



So, stability guarantees that the scheme produces a bounded solution if the exact solution 

itself is bounded. So, in that sense it is a very important property, and we have seen that 

consistency al1 is not sufficient for us to ensure converges, and good solution, but if we 

also have stability then we could get possibly a converge solution. So, in this sense how 

do we express this problem this concept of stability. 

Consider d to be the exact solution of the discretized equation, the capital d and similarly 

capital n to be the computed solution using a given numerical scheme. And both d and n 

will vary with position and time in a functional space of x and t, they going to vary with 

x and t. So, you could say that d i n with subscript i and superscript n is the exact 

solution of the discretized equation at the spatial location i, and at the temporary location 

given by the index n similarly we can say that n sub i sup small n is the computed 

solution, at the same spatial location i and the temporary location n and the error at the 

ith location at the nth time step; is therefore, given by the difference between the two d i 

n minus n i n has given here. And this error is going to change with time and it is going 

to change with the location, stability means that the error at a particular location does not 

get amplified with time. 

So, that is the error at spatial location I, at n plus 1 divided by the error at n this ratio here 

is always the magnitude is less than 1. So, that it does not become either amplified in the 

positive values or negative values. Example if you have 1, 0.2 and if the ratio is 2 then 

next time it is going to be 3.6 and then after that it is going to be some eleven point 

something and after that it is going to be some thirty five point something. So, the value 

is going to increase tremendously and similarly if the ratio is actually minus 3 then, it 

will go from 1.2 to minus 3.6 plus 11.8 minus 35. So, it will keep on getting amplified 

isolating negative and positive. And if it is going to increase magnitude wise in that way 

it does not matter is accelerated between positive and negative or just accelerating. It will 

soon grow to such a high value that the true value of that functional solution at that 

location. Example 10.5 may be the value here and if the error goes to 35 and 110 like that 

that error itself becomes much larger than the functional value and so, you will use the 

real functional value variation if the error becomes very high. 

So, we do not want this ratio of the error at n plus 1 to the error at n to be greater than 1 



in magnitude. Because if greater than 1 it starts accumulating and because we tend to 

take very many values to reach a particular time step time location because we would 

like delta t to be small. So, that we can maintain good accuracy, that means, that in order 

to reach a particular time denote we have to take lots of steps. So, in taking the lots of 

steps if you have an amplification factor even if it slightly greater than 1 it can 

accumulate very fast. So, we would like the error to be such that error at n plus 1 divided 

by error at n is always less than or equal to 1 in terms of magnitude. So, this we can say 

is the formulation of the stability. Now the question is how do we know the error and if 

you know the error. 
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Why do not we just add it or subtract it to get the true solution. 

So, in all of stability analysis we do not explicitly compute the error. We only look at the 

whether a given scheme has this property of amplifying the error or not. Whether or not 

the scheme has property of amplification, as for as the stability analysis concerned 

stability of a linear equation with constants coefficients is well understood, and lends 

itself to simple analysis if the effect of boundary conditions can be neglected ok. 

So, if the boundary effect of boundary conditions can be neglected and if you can treat 



the boundary conditions effective as periodic boundary conditions then we can have a 

powerful analytical tool which known as the von Neumann analysis which can be 

performed on a uniform grid. And the non-even form grids then we have more difficulty, 

when the effect of boundary condition has to be taken a matrix method of stability can be 

used all though it is difficult implement in practice as it requires the evaluation of 

eigenvalues of large matrices. And similarly when you have non-even form spacing 

again you can make use of the matrices method. 

For general non-linear and non-constant coefficient problems local stability analysis can 

be performed on linearized set of equations, but what we have as stability analysis is the 

linear stability analysis. So, and we are going to discuss the simplest of a stability 

analysis which even though it is simplest it still gives a feel for the possibility of 

instability gross instability which manifests very quickly. So, this is known as the 

Neumann method, von Neumann stability analysis and this analysis is strictly applicable 

for linear equations with uniform spacing and with periodic boundary conditions. So, 

under those conditions it is possible for us to evaluate the amplification factor all though 

we do not individually evaluate error at n plus 1 and error at n. 
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So, how do we do this evaluation of the stability? So, we evaluate we obtain an error 



evolution equation in the following way; for example, if we take the FTBS scheme for 

the linear convection equation it is a linearized convection equation that is why we put it 

as u naught is the wave speed, and confusing though, but this u is a variable u, So, u have 

dou u by dou x dou u by dou t plus u naught times dou u by dou x equal to 0. In a way if 

it is left hand side of the momentum equation with the 1-dimensional form of the left 

hand side of the momentum equation neglecting the influence of pressure and neglecting 

with customs and it is also linearize around point u naught. 

So, for this if we apply forward in time here and backward in space here, then we get an 

FTBS scheme like this. Now, we say that d i n, capital d i n is the exact solution of this 

equation so; that means, that if you substitute d i n into this equation appropriately then 

this equation would be satisfied therefore, at point i n plus 1, this is d i n plus 1 and here 

it is d i n divided by delta t plus u naught times d i n minus d i minus 1 n divided by delta 

x equal to 0. This is because capital d i n is the exact solution of the discretized equation 

by definition.  

And n i n is the computed solution of this equation to machine accuracy and therefore, 

we can say that n i n plus 1 minus n i n divided by delta t plus u naught times n i n i n 

minus n i minus 1 n divided by delta x equal to 0. What is the difference? Whereas d 

does not have any error, n has error. And what this 1 is saying is that there is some error 

at n i at n plus 1 and there is also error at n and these are cleverly because n i n plus 1 is 

actually derived from n i n it is carrying the error from n i n and it is also modulating the 

error by the influence of errors from the neighboring things to get a new value of error 

relating numerical solution n i n plus, 1 such that this overall equation is satisfied. 

So, the difference between equation two and equation three is d is the exact solution and 

this is exact solution plus an error, but the error is not random error, it is the built up error 

built up from previous time at n time step, and also neighboring space points. So, it is a 

built up error and the error builds up in such a way that you get a numerical solution 

which also seems to satisfy the discretized equation, because this is solved to machine 

accuracy and machine accuracy can be sixteen decimal places or and so on. So, for all 

practical purposes the value of n i n plus 1 that you compute from the previous value 

satisfies the governing equation. 
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Now, we have defined error at i n as d i n minus n i n and therefore, you can say that n i n 

equal to d i n minus epsilon i n and therefore, we can substitute this into equation 3 here, 

where i we have n i n you substitute d i n minus e i epsilon i n and where i we have n i n 

plus 1 you substitute as d i n plus 1 minus error at i n plus 1 like that and if you do that 

you get this equation, and if you re rearrange this bring all the ds together and then all the 

epsilons together you get this equation. And in this the first part is exactly equal to 0 

because d i n is the exact solution of the governing equation and we have also seen that 

here. So, d i n plus 1 minus d i n by delta t plus u naught times d i n minus d i minus 1 n 

by delta x is exactly equal to 0. 

So, we substitute that here and we get an equation for error. So, this as we have already 

said error is building up and error at n plus 1 is now related to the error at the previous 

time step at the same location and the neighboring spatial locations, as per this particular 

formula. So, this equation here gives us the error evolution equation how error builds up 

if this equation has a solution such that the error does not build up, then we are safe, but 

if this has a solution of the form that error does build up then we have problem here. 
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How do we know whether this has the building up property or not? So, what we say is 

that let us assume that this has the buildup property and if that is the case what is the 

exponent of that. So, what we are looking at is because we are dealing with the linear 

equation, all we have we are started with a linearized wave equation 1, dimensional wave 

equation. So, it is a linear equation and in a case of linear equation we can always 

superpose different solutions.  

So, we make use of that possibility to decompose the spatial distribution of error that is 

epsilon x, as as a fourier series and because we are dealing with the assuming that we 

have periodic boundary conditions, it is possible to express the error at any time t as a 

finite number of wave modes of this particular form here. So, we can substitute we can 

express the error at any time t, as some over m of b m times exponential of j k m x where 

j is square root of minus 1. It is a imaginary number here and where k m is the wave 

number which is given by which takes the values of m pie divided by capital l where 

goes from 0, 1 two up to capital m where capital l is the domain in the x length and 

capital m is l divided by delta x where delta x is the grid spacing and b m is amplitude of 

each wave component. 
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So, let us just try to visualize this for example, we are looking at an x domain here which 

is going from 0 to 1, and here we have a function f of x here, we see different color 

things you have this blue color, is a sinusoidal wave like this and it has a certain wave 

length which is given by roughly 0.1 here and you have a red color thing here which has 

exactly twice the wave length and it is varying like this. And you have a dark red color 

here which has even longer wave length which is, 3 times the base wave length here and 

then you have a green one here, which has four times the basic wave length. So, you 

have here four sinusoidal functions. Sinusoidal functions of wave length of 0.1, which is 

the blue color and light red color is wave length of 0.2 and dark red color which is the 

wave length of 0.3 and green color which is a wave length of 0.4. 

So, you can superpose all these things you can for example, multiply the first wave by a 

constant and second wave by another constant third wave by another constant and forth 

wave by another constant and make it up as f and if you do that then you can get a 

variation of f1 which is given by this blue thing here, and you can see that it is somewhat 

like this, but not exactly like this and by using different coefficients instead of 0.1, 0.2 

like that if use a different set of coefficients the same 4 sinusoidal components of wave 

length of 0.1, 0.2, 0.3, 0.4. If multiplied by some other constant then they can represent 

this red function here. 
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So, and to show this example here this spatial distribution here this spatial variation of f 

x is made up of ten wave components here. Where you have basic wave length lambda 

here plus 2 times lambda, 3 times lambda, 4 times lambda, 5 times lambda, 6 times 

lambda, 7 times lambda, 8 times, 9 times,10 times and each of them has a coefficient like 

0.1, 0.2, 0.3, 0.4 like this and with i also put a dc component a constant value here. If I 

change this to 0, then this whole thing will come down the shape does would not change 

if I change this 0.1 to something else then this form changes, if I change this 1 to 

something else this form changes. 

So, the same 10 components if added differently with the different proportionality 

coefficients here can give is to different functional forms and what we are saying is that 

the error in this space at each of these grid points 0.1 point naught 1 point naught 2 point 

naught 3. If you put them here they may be like this this error can be represented as the 

sum as the contribution of different wave components which are there and the 

contribution of each wave component is given by the coefficient 0.1, 0.2, 0.3 like that 

and the sum of all these things will give rise to the spatial distribution of error at time 

equal to t and time equal to t plus 1 at t plus delta t you will have a different error 

distribution. Because error has evolved even that can be represented as a combination of 

the same sinusoidal functions, but with different coefficients 0.1 instead of 0.1, 0.2 you 



may have 0.25, 0.3 which we have seen here example the sum of these four with one set 

of coefficients will give rise to this b function blue function here, and with another set of 

coefficient will give rise to this red function here. 

So, that is what we are saying here the error at time t at a particular time is no function of 

space this spatial function of epsilon x is represented as a coefficient times a sinusoidal 

component, coming from this exponential of j k m where k m is the wave number which 

is inverse of the wave length which is given by this thing here, and the number of wave 

lengths wave components which coming to this decomposition Fourier decomposition is 

given by capital m where capital m is the total domain length divided by the delta x 

which is a thing here which is the spacing and for a domain the bounded by periodic 

boundary conditions, we can expand the error function the spatial distribution of error in 

terms of this finite number of wave components. 

Now, since the error equation is linear we can study the error behavior of each wave 

component and see whether this particular wave amplitude will grow in time or will 

decline in time. So, we can say that this is this is amplitude like the 0.1, 0.2 that we that 

we put earlier and this is a sign function involving the lambda here. So, this amplitude if 

it is growing in time for this particular wave then, it is going to contribute to the growing 

error if the amplitude decreases with time then, we can say that it is decline it is going to 

not build up it is going to disappear soon.  

So, what we are looking at we are looking at a solution for a particular wave component 

m small m as b m times exponential of j k m x or since we are looking at whether it is 

going to increase or decrease this time we express this as exponential of a times t where t 

is increasing. When you go from t to t plus delta t if a is positive then b m will increase if 

a is negative then, b m will decrease. So, that is what we are looking at and this is 1 

particular wave component, this can be now because we have wave component wave 

contribution coming from different is I, i plus 1 i minus 1 and different ts n plus 1 n 

minus 1 and n like that. 

We can write a discreet function of this as the error resulting from the nth wave 

component at ith space location. And nth time step as exponential of a times. Where a is 



the constant to be determined n where n here delta t and exponential of j k m i delta x. 

So, wherever you have x you substitute it as i delta x wherever you have t you substitute 

as n delta t here, and we substitute this in the error evolution equation here. So, let us see 

what we have. 

If you substitute if you substitute these into this equation here and divide by the error at 

epsilon i n, that we are normalizing it then we get we get epsilon i n plus 1 divided by 

epsilon i. And what is epsilon i n plus 1 divided by epsilon i as per this? This is equal to 

exponential of a n plus 1 delta t exponential of j k m i delta x divided by exponential of a 

n delta t times exponential of j k m i delta x. So, this cancels out that gives us exponential 

of a n plus 1 delta t divided by exponential of a n delta t that is nothing, but exponential 

of a delta t. So, with that thing we can once we substitute we get an expression like this. 
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This is coming from the time derivative terms and this is coming from the space 

derivative dou u by dou x and this is coming from dou u by dou t and this sigma is a 

number a delta t by delta x. 

So, this is the after substitution of this assumed wave component variation with time and 

space in this particular wave and substitution of this into this and simplification will give 



us an equation like this and we know that epsilon m i n plus 1 divided by epsilon m i n is 

the amplification factor for this wave component. And that is given by exponential of a 

delta t and therefore, we can write this as g minus 1 plus sigma times 1 minus this whole 

thing equal to zero or j g equal to 1 minus sigma plus sigma times exponential of minus j 

phi. Phi here is just nothing, but k m delta x and depending on the value of k m where k 

m as we have seen here as per the decomposition for different wave numbers this k m, 

can go from 0, 1, 2, 3 up to capital m here. So, each of them will correspond to an angle 

here in this imaginary versus real plot of this amplification factor in general, this 

amplification factor can be imaginary. So, when you put it in this particular form then 

you will get a variation like this. 

So, for a given value of sigma and for phi going from 0 up to this you can get a function 

for g a value for g, and if that value here is such that the magnitude of this amplification 

factor is less than 1. Then you have stability if it is less greater than 1, you have 

instability now we can see that for the modulus of g to be less than 1 sigma has to be less 

than 1 from this. So, this function will this thing here is the unit circle and this is a circle 

which is made by this function g here and this circle which is centered at 1 minus sigma 

value with this as the radius ok. 

So, if sigma as long as sigma is less than or equal to 1 then g will be less than or equal to 

1 if sigma is greater than 1 then this value will be the center of this will be lying outside 

the imaginary circles. So, this will have at least for some values of g there will be g will 

be greater than 1. So, and; that means, that there are some wave components which will 

become unstable and they will contribute to a growing wave. So, if there is a decline 

wave and a growing wave the decline wave will go to zero very quickly errors coming 

from that, but the growing wave will amplify the errors and that will dominate the 

solution and therefore, they whether or not a dominates the solution whether or not the 

amplitude of a particular wave component goes up or not is given by this amplification 

factor and which we see depends on sigma which is a delta t by delta x. 

So, choosing the appropriate values of delta t and delta x such that your sigma is less 

than 1 will ensure that you will get a stable solution and that is what the stability analysis 

and this particular condition is known as CFL condition or Courant Friedrichs Lewy 



condition for the 1 dimensional wave equation and this is the famous CFL condition first 

successful analysis of condition for stable scheme is essentially captured by this. So, 

from this we can say that FTBS scheme is conditionally stable. Conditionally stable in 

the sense that only when sigma is less than 1, given that sigma is a delta t by delta x and 

we are assuming the wave speed to be positive quantity. So, this delta t and delta sigma is 

always positive. 

So, if sigma is between 0 and 1 then this is stable if it is greater than,1 this may become 

unstable and that is what we have seen for the FTBS scheme we saw that for sigma of 1 

0.11 it has becoming unstable, but for sigma of 1 or 0.5 and 0.2 five it is not exploding it 

is giving some shape. So, in that sense FTBS scheme is conditionally stable as 

demonstrated by this von Neumann stability analysis. In the next lecture we will explore 

other schemes using the same von Neumann stability analysis both to get an 

understanding of what this stability is how to apply this stability analysis scheme and 

also what it implies. 


