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Today we will start the third module of this particular course, and in this module we are 

going to look at numerical solution of the governing equations which we have derived in 

the second module. We are also going to look at the concepts of Finite Difference 

Methods which enable us to convert a partial difference equation into an algebraic 

equation. So, part A of this module which may take about a week's worth of classes is on 

Finite Difference Methods and how we can make use of this - Finite Difference Methods 

to find approximations for the partial derivatives that occur in our governing equations. 
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The basic concept of a CFD approach is something that we have a already seen in the 

very first week, where we tried to calculate the flow through a rectangular that and we 

saw that day that in those lectures that there are certain steps that we take while doing a 

CFD solution. 



So, first one is assembling the governing equation and then the next is identifying the 

flow domain and boundary conditions and third is geometrical discretization of flow 

domain. So, these are the things that we can now say we have some idea about these 

things and we have seen in the second module what kind of governing equations are 

there. For example, the equation of navier stokes equation for an incompressible flow 

constitutes a set of 4 equations with 4 variables.  

So, these are supplemented by a flow domain and the boundary conditions and initial 

conditions that go with it. We have a mathematical problem in which we have enough 

number of equations to solve for the number of variables and we go into the solution 

from the formulation of the problem into the solution part. So, we have also noted that 

these governing equations are coupled non-linear equations and that in the general case 

there is no analytic solution for these and which is why we would like to do a numerical 

solution. 

So, when we do a numerical solution we go away from trying to define, find the value of 

phi at any x y z t into defining the value, finding the value at grid points. So, this is 

where we have this idea of geometrical discretization of the flow domain where we 

identify, we spread a large number of points throughout the flow domain and at these 

points we would like to find the flow variables and the flow variables are like the u 

velocity component, v velocity component, w velocity component, pressure, 

temperature, concentration, enthalpy, whatever else that is associated with the flow and 

whatever else that can be derived from these things.  

For example, the shear stress, the heat transfer coefficient, the mass transfer coefficient, 

the net force acting on it all these things are derived quantities that we have a set of 

fundamental variables - for example, in the case of incompressible flow without any heat 

transfer of a simple single component fluid. We have 4 equations - the 3 momentum 

equations and 1 continuity equation, describing the four variables u v w and p. So, we 

would like to find out the values of these variables at these points grid nodes spread 

throughout the domain. 

So, once we have identified why we want to find the variables and what variables we 



want to find then it comes to how to do this, how to find these things from the equations 

that we are giving. So, that aspect of this is what we are going to discuss in this particular 

part and we make use of finite difference approximations to get an approximate 

equivalence for the derivatives that occur in the governing equations, and when we 

substitute this approximations the governing equation becomes a set of algebraic 

equations. And in the process we also make use of the boundary conditions.  

So, we are going to stress on the Discretization of the governing equations on a given 

grid and Incorporation of the boundary conditions, together; and when we do this 

together we will get a system of algebraic equations and we will go on to the solution of 

this algebraic equations later. But the focus of this particular lecture and the coming 

lecture in this module is on the guiding principles which tell us how to do that discrete, 

how to write approximations for the partial derivatives using the finite difference 

approach, and what kind of approximations are admissible, and what kind of 

approximations are not really the good way of going about it. 

So, we are going to look at the two concepts, two steps the discretization of the 

governing equations and the incorporation of boundary conditions. 
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So, the outline for this set of lectures is that we look at the basic ideas behind the finite 

difference approximations and we also touch up on the idea of deriving an approximation 

of a given order of accuracy. Because we will see that there is no single unique 

approximation, there can be many choices and accuracy is one parameter which 

distinguishes one choice of approximation from another choice.  

Obviously, we would like our approximation to be accurate and we would like to need a 

come up with a method by which we can write a finite difference approximation of 

arbitrary accuracy. We will see what we mean by accuracy and arbitrary accuracy. And 

once we do these two things we look at finite difference formula approximations for 

higher derivatives and we apply these basic ideas to an elliptic problem and then, we see 

how we can make use of these approximations to convert an elliptic partial differential 

equation into set of algebraic equations. And then we touch up on time dependent 

problems which bring in additional complexities associated with writing the finite 

difference approximation. Finally, we look at finite difference approximations on non-

uniform meshes. 

So, non-uniform meshes are the once that are practically used, but the basic ideas can be 

easily understood with a uniform mesh and it is in this context when we talk about 

geometrical discretization of the flow domain as far as the initial modules are concerned 

we are looking at simple (Refer Time: 08:17) in mesh. So, that is we have a rectangular 

mesh with uniform grid spacing in the x direction and y direction and therefore, the 

boundaries of flow domain are x equal to constant, x equal to constant, y equal to 

constant and y equal to constant.  

So, they can be fit in a rectangular shape flow domain. So, for something like this it is 

pretty trivial to fit a uniform mesh with a delta x spacing in the x direction and delta y 

spacing in the y direction. If you know the width divided by a number of intervals that 

we have will give us delta x and similarly, the height divided by the number of intervals 

in the y direction will give us delta y. So, using this we can illustrate the basic concepts 

of finite difference approximations and we can also look at why certain approximations 

are good and certain others are not good. So, all these things we will discuss in the 

context of uniform mesh, but we will also touch up on how the finite difference 



approximations can be derived from non-uniform meshes. 

So, once we have gone through all these things we will have a good idea of what kind of 

finite difference approximations are possible and how these can be substituted in 

governing equations in order to convert them from partial differential equation into a set 

of algebraic equations. So, all these will do in part A. But at the end of this part A, 

towards end of this we will do one simple exercise to apply these concepts to typical 

problems that we have in a fluid flow and we show that the approximation is not so 

trivial as it sounds, not so straight forward as it sounds. There is much more that is 

required to be known in order to come up with good approximation.  

So, at the end of that we will have understood what difficulties can arise in writing a 

finite difference approximation and we will see that all the concepts that we are talking 

about here will not be sufficient for us to attempt a CFD solution straight away, there can 

be many pit falls. So, in part B of this will go into the analysis of this discretization 

schemes and then we see under what conditions we might get good approximation and 

under what conditions we may not get good approximations, a good approximation 

which will lead us to reasonably accurate solution. So, that is part B and now we are 

looking at part A. 
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So, the basics of finite difference methods approximations are the first things that we 

need to know and finite difference methods are quite old not very recent they have been 

there for centuries and there also what we can say are out dated for CFD applications. 

The finite difference applications have been more or less over taken by finite volume 

type or finite element type of approximations because of the additional advantages that 

arise when we want to tackle non rectangular, non simple geometries. We will see that 

towards the end of this course.  

But one could say that to that extent finite difference methods are dated, but still they are 

useful even with finite volume method we will see that even when we use finite volume 

of finite element method. We will have to approximate derivatives and at that point the 

finite difference approximations knowledge of these things becomes almost essential and 

even though it is simple and dated and old it serves as a point of departure to understand 

the concepts of CFD. We do not want to go straight away jump into the real world type 

of application, we would like to start with some simple things and then build up 

knowledge and understanding and then tackle the real world problems. 

So, it is in that context, studying finite differences is also a point of departure for proper 

CFD studies. So, the knowledge of finite difference approximation is needed because the 

principle idea of CFD methods is to replace a partial differential equation which 

describes the evaluation or the way or the constants on how the variable can vary within 

our flow domain subject to physical loss. So, to replace that partial differential equation 

which is difficult to handle analytically and replace that by an equivalent approximation 

involving finite differences, so that the partial differential equation gets converted into an 

algebraic equation involving the variable values at this finite positions at this grid points 

as a variables.  

And we would also like to note that finite difference techniques are one of several 

options for this discretization governing equations, we can have finite element methods, 

finite volume method is something that we have seen in the second week when we did 

the (Refer Time: 14:48) of triangular depth. You can also have spectral methods and 

collocation methods and so many different ways of a solving these things. But in our 

CFD because we are dealing with a lots of coupled equations and when we are dealing 



with even more complicated phenomena like turbulent flow, turbulent reacting flows and 

all that, we have lot more number of equations of different complexity and non-linearity 

come into picture and in such a case people prefer to stick to finite difference and finite 

volume methods. 

Finite, one would like to stick to finite difference methods, but finite volume methods of 

what can enables us to solve real world problems and that is where we make use of finite 

volume methods of fairly low order accuracy, and we make use of the might of the 

computers to reduce the error to within tolerable limits. With this kind of introduction let 

us just see what we mean by this finite difference method. So, the basis of finite 

difference approximation is the Taylor series expansion of a function at a particular 

point.  

So, let us consider a function f of x, it is a continuous function and it is differentiable; 

that means, that you have continuous derivatives of up to order n what are the value of n 

is. And the idea of this Taylors series expansion is that the value of function at a 

neighboring point can be expressed in terms of a Taylor series involving the function f of 

x at x and that derivative all of which are defined at x. So, the value of the function f at 

location delta x which is close to the point x is expressed as the function value at x plus 

the first derivative evaluated at x which is why I put this in red color to emphasis the 

point that the derivative is evaluated at x, not at x plus delta x, not at similar in between it 

is evaluated at x times delta x plus.  

Second derivative, again evaluated at x times delta x square by two factorial and plus so 

on plus the nth derivative of x evaluated at x times delta x raise power n divided by 

factorial n and so on. So, this is a series expansion and this series expansion would 

converge provided delta x is small and f is a differentiable and all these derivatives exist 

and they continues.  

So, when you have these conditions satisfied then we have a converging series. So, what 

you mean by converging series is that although this can go to infinity after a certain 

number of these terms here you have the first term, second term, third term, fourth term 

like that. After set number of terms the successive term that follow that will become 



smaller and smaller in magnitude.  

So, if you take the 10th term it is likely to be greater than the 11th term in terms of the 

magnitude and smaller than the 9th term, so that the 11th term is smaller than the 10th 

and 12th term is smaller than the 11th. So, successive numbers, successive terms and 

what we mean by term is that the nth derivative evaluated at x the numerical value of that 

times delta x raise power n divided by factorial n. The value of this whole term in 

magnitude becomes progressively smaller, so that it does not make that much difference 

if you add another 50 terms or another 100 terms the cumulative effect of those last after 

finite number of the forward terms, the first terms is going to be small. In such a case we 

say that the series is converging.  

So, once you have a converging series you can say that a neglect instead of writing this 

up to infinite number of terms I can neglect the terms that are coming after n number of 

terms, and what is this n? This is a (Refer Time: 19:53) and it depends also on how small 

delta x is. If delta x is very small that is, if x plus delta x is pretty close to x then may be 

the third term itself is going to be very small and you can neglect from third term 

onwards or delta x is large then may be will take many more times before we can get into 

the converging thing and the contribution of the higher terms becoming smaller and 

smaller. 

But, if you have a converging series then it is possible to write an approximation for the 

value of f at x plus delta x in terms of the value of f at x in the derivatives. And we would 

like to point out again here that all the derivatives are evaluated at x. So, that is this 

approximation this enables us to extrapolate from knowledge of the function and is 

derivative at x to the new value of the function at a neighboring point x plus delta x. So, 

this enables us to extrapolate using knowledge only of the function is derivatives at x. 

So, that is an important point to keep in mind. 
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So, now you can derive this Taylor series expansion in this form. We have not made any 

approximation here, we just plot the df by dx on to one side and then put all the other 

terms, we have taken all the other terms on the other side so that you have the first 

derivative at x is expressed is given as f of x plus delta x minus f of x divide by delta x 

and minus dou square f by dou x square in this particular case you put as d - d square f 

by dx square at x times. It should have been delta x by two factorial, but since we are 

dividing by delta x here, one delta x cancels out and then you have delta x factorial two 

and similarly the nth term in this or n plus 1th term in this is nth derivative of f with 

respect to x evaluated at x delta x raise power n minus 1 divided by factorial n and so on. 

So, now here we can say that we can look at this expression here as a possible 

approximation for the value of the derivative that is dou f by dou x can be roughly 

written as taking only the first term here that is f of x plus delta x minus f of x divide by 

delta x. And if you take only this part here you are only taking the essentially the first 

two terms in this. So, writing an approximation for this in terms of these two terms and 

we are neglecting all these things, it is a gross simplification. That if it would be OK, if 

delta x is small. It would be OK, if the higher order derivatives are very very small that 

is, if f varies smoothly then higher and higher order derivatives will have very small 

values and this value is going to be anyway small and is going to multiplied by this delta 



x raised power n here and delta x is small.  

So, the contribution of this will decrease not only because you are raising the power of a 

small value and not only because you are in dividing by a factorial of an increasing 

number, it also because the derivative itself is a small value. So, in a smoothly varying 

functional space it is possible for us to make this gross kind of simplification and then 

neglect the contribution of all these things and then write an approximation like this.  

If a fluid flow in many cases involving fluid flow and for example, temperature thermal 

diffusion type of problems we expect a smooth variation, in such a case it is not such a 

bad thing. So, to that extent although it is a gross simplification it is a feasible 

simplification, it is an admissible simplification provided that delta x is small and f varies 

smoothly with x. So, in such a case we can write this formula here as giving an 

expression approximate expression for dou f by dou x which is a derivative of f with 

respect to x and this is what we want to find an approximation for.  

So, we can write it as f of x plus delta x minus f of x divide by delta x plus this thing here 

this is a technical jargon which says this terms or the order of delta x and lower and in a 

way higher order terms. So, what this means is that in this equation you have this term 

here, this term here, this term is there and from here onwards we are neglecting all these 

terms. We also have said that this is converging series and in a converging series the 

higher order terms here will be progressively smaller. So, the leading term, the term with 

the largest magnitude will be the first term which is neglected in theory provided delta x 

is small and f is smooth.  

And this term, it depends linearly on delta x. So, that is why this is what we mean by an 

order of approximation here. So, this means that terms of the order of delta x are the 

terms which are being neglected here and because delta x is small this is going to be 

delta x square, we expect this one to be smaller than this. So, in that sense this is the 

leading term and the dependence of this term on delta x indicates the order of the 

approximation. So, we can say that this is a first order approximation for df by dx at x 

and expressed in terms of the value of f at x and the value of f at a small distance delta x.  



So here, order of delta x implies the leading term in the neglected series of terms or the 

truncated series is of the order of delta x and it means that arrive in the approximation 

will become will reduce by a factor of 2 if you reduce delta x by a factor of 2. So, if delta 

x is halved then the approximation error in the approximation will reduce by a factor of 

2. So, equation 2 here is therefore, a first order accurate approximation for the first 

derivative at x. So, the same idea can be expressed. 

(Refer Slide Time: 27:28) 

 

We can also go back to the equations and then write other approximations for example, 

writing the Taylor series expansion for f at x minus delta x. So, that is to the left of it 

instead going forward in the x direction it going backward in the x direction, you can 

write f of x minus delta x as f of x minus df by dx again at x time delta x plus d square f 

by d x square at x delta x square by 2 like that. So, this thing here has to multiply by 

minus 1 raise power n here. So, it is not always plus it is alternating as minus plus minus 

plus minus plus like that and that depends on whether this delta x to the power n here 

when it is square, it is even power then it is plus odd power it is negative. So, multiply 

this by minus 1 to the power n. So, that will give us the sign of this particular term here. 

So, in this case because delta x is negative here it is going to be a alternating like this and 

we can do just like what we have done, we can bring this to the left hand side and take 



this to the right hand side. And then we can write df by dx at x is equal to f of x minus f 

of x minus delta x divide by delta x this is here and then all these other terms will be d 

square f by d x square times delta x square by delta x. So, you have delta x by factorial 2 

and all that here.  

So, again the leading term in this approximation is again of the order of delta x, is this 

term greater than the other term or it is exactly the same in magnitude, in this particular 

case it is going to be added and in the other case it is subtracted. And it is same thing 

because we are looking at the functional second derivative at x which is the same in both 

cases and delta x also the same. So, in that sense the same error is being introduced here 

it is being added here and subtracted there. So, in terms of the error it is same thing 

whether it is this or that, but if the delta x is different than; obviously, the error value will 

be different. 

So, this is different approximation involving f of x and f of x minus delta x. So, if you 

know the value of f at x minus delta x then you can use this to evaluate their derivative 

and if you know the value of f at x plus delta x and x then we can make use of this. So, 

both are possible and we can also derive other approximation. So, you have this 

approximation here given by equation 3 for f of x minus delta x, and you have equation 1 

which is f of x plus delta x and if you subtract equation 3 from equation 1 then what we 

get is f of x plus delta x this f of x will cancel out, the second derivative term will cancel 

out and this becomes plus 2 df by dx and so on and that will give us a different 

approximation.  

So, df by dx again at x is given roughly as f of x plus delta x minus f of x minus delta x 

by 2 delta x plus terms of the order of delta x square, because the leading term here that 

this term will cancel out and you have d 3 f by dx 3 at x times the delta x cube by 

factorial 3 divide by delta x, divide by this 2 delta x here. So, that gives us delta x square. 

So, the leading term in this particular case is delta x square, that means that this 

approximation is such that if you reduce delta x by a factor of 2, if you halve delta x then 

the error will reduce by the factor of 4. That means that this approximation 5 given by 

equation 5 is better than this approximation, because you can reduce the error faster with 



the second order accurate approximation as compared to the first order accurate 

approximation. So, we can derive many such approximations.  

In the next lecture, we will put these things together and we will see what they mean and 

then we will move on to further applications of this. We will look at how to derive an 

approximation for a first derivative or any derivative of any given accuracy. 


