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Lecture — 19
Practical cases of fluid flow with mass transfer in CFD point of view

In the last lecture, we have considered the case of heat transfer and we have looked at
what kind of equations would represent a flow with heat transfer; that is, including the
velocity, pressure and temperature. We derived a set of equations, which are summarized

here.
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The governing equations for incompressible, constant property flow with heat transfer.
We have a continuity equation, and a momentum conservation equation, the 3
momentum in the 3 directions; and then, we have an energy conservation equation, in
which, through which, temperature is brought out as a free variable. So, the set of these 5
equations together, have as variables the 3 velocity components u, v, p, u, v, w, the
pressure, and the temperature, as a set of 5 variables. And, the solution of all these things
requires it in material properties which include the density, the viscosity, kinematic

viscosity, thermal conductivity, and the specific heated constant pressure. So, with these



things, it is possible to write down the set of governing equations.
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Heat Transfer Applications
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And, we considered how these governing equations could represent the case of
convective and conductive heat transfer that we know of, without having to specify any
heat transfer coefficient. In the case of radiative heat transfer, of course, we have seen
that, we need to do lot more work in order to get a proper description of radiative heat
transfer, and that radiative heat transfer is not included in the set of equations which we

have just now seen.

In today’s lecture, we are going to do something similar for mass transfer. If you have a
flow with mass transfer, then, what are the equations that will describe this. So, we are
going to look at mass transfer applications, and, we will try to structure it in a proper

way, so as to understand it in the short amount of time that is available for us.
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So, we are going to look at the overview. We will take an overview of the approach to
mass transfer within the framework of CFD. We have seen that, within the framework of
CFD, heat transfer requires, in a certain way, is treated, is done, in a certain way. So, how
do we do mass transfer in this? And, as part of this, we will be deriving the species
balance equation, a mass conservation equation of species. And then, we will also look,
we will derive the conservation equations of momentum and energy for mixtures,
because, mass transfer requires us to have at least 2 species, so that, one species is going
from one part of the fluid domain into another part of the fluid domain, so that, there is
mass transfer between, across gradients, and all that. That requires us to identify species.
And so, we are considering the fluid now to be a mixture of different species, and the
approach that we have in CFD is that, we have separately, species balance equations, and

we have, also have a mixture balance equations.

So, those corresponding equations are what we are going to derive, in the rest of the

lecture. The approach is given, summarized, in this slide.
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We assume the fluid to be a mixture of various species, and we take account of the
concentration of individual species, and components. For this, we solve the balance
equation, a species balance equation. And, we define mixture properties based on
individual species concentrations. And, we solve the momentum and energy conservation
equations for the mixture, rather than for the individual species. If you do that, then, we
have too many variables, and it is not worth all the trouble. It is possible to make some

simplifying assumptions, which can be restrictive in certain cases.

It is possible to make those kind of assumptions, and reduce the complexity of the
problem, and bring it into a mixture momentum balance equation, and a mixture energy
balance equation, but, a species mass balance equation. So, with this kind of formulation,
it is possible to tackle mass transfer with, and without chemical reaction. And, the effect
of the chemical reactions can be incorporated. In the case of homogenous reactions, these
enter into the overall calculations scheme, in the form of, either a source term, or a sink
term, of the species balance equation. So, there is a certain rate of generation, or rate of
destruction of a species, because of chemical reactions. We are not considering nuclear
reactions. Therefore, there is no destruction, or generation species from that. But, a
chemical reaction can change the species, although the elementary balance always has to
be satisfied.



So, what we are looking at is the species balance equation, and not the elemental balance
equation, and that is something that we would like to highlight, as part of the derivation
here. In the case of heterogeneous reactions involving 2 different species, heterogeneous
reaction between a solid and a fluid phase is, obviously, coming as a boundary condition,

because, we do not, we are looking at fluid mechanics.

So, the solid is a boundary, and so, any reaction between the solid and the fluid here, may
come in as a boundary condition, in case, the solid species is on the walls of that
particular fluid domain. If it is somewhere inside, finely dispersed, then, it may come as
a, as a homogeneous source term. And, in the case of gas — liquid, or gas — solid, liquid —
solid, gas — solid - liquid systems, which are finely dispersed throughout, where you do
not have a clear separation of the domains, then, we have to do multiphase flow
modeling, which is beyond the scope of this particular course. So, we are looking at, this

is the overall approach.

So, when we want to deal with mass transfer, we have to do much more than the simple
Navier Stokes equation. We need to have species balance equations; we need to have
mixture balance equations; and, we need to have mixture momentum, and energy balance
equations. And then, we need to have a framework for dealing with chemical reactions.
So, we will do these things step by step.
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So, we have already created a template for a conservation equation, for deriving the
corresponding conservation equation. And, for example, for the mass conservation
equation for a fluid, we considered a control volume, and then, we stated that, ‘the rate of
accumulation mass within that control volume, in the absence of any, any sources, or
sinks, is given by the difference between the rate at which it is entering, and the rate at
which it is leaving here’. We can do something similar for a species conservation

equation.
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We take our magical cubical box, having delta x in the x direction, and having a height of
delta y in the y direction, and a depth of delta z in the z direction here, with an origin
which is located right there, which is xyz, so that, this point is x plus delta x by z; and
this point is, x plus delta x, y plus delta y, z; and this point here is, x plus delta x, y plus
delta y, z plus delta z. So, that way, we can identify all the 8 vertices of this box, and we
can work with that. So, here, we are making a statement of the species conservation
equation verbally, like, rate of accumulation of mass of species A in the CV, in the
control volume, is equal to rate at which the species A enters the control volume, minus
the rate at which it leaves the control volume, plus rate of production by homogeneous

chemical reactions inside the control volume, ok.

So, we can consider that, throughout this, we note that, this particular volume, is in
infinitesimal control volume in the fluid continuum, and we are saying that, this fluid
continuum contains species A in a certain concentration. And, because of this
concentration, and because of the presence of other species, species A can be either
produced, or destroyed, used up, because of chemical reaction. And, this chemical
reaction is happening in the, as a homogeneous chemical reaction; that is, in the same
phase, either, within the liquid, or within the gas, within the fluid that we are considering
here, and it is happening everywhere. So, that rate of production is what is considered



here. In the case of destruction, this term will be negative. And, why we put plus here,
because, in the absence of this rates at which it is entering, and this thing, production of
the species will lead to accumulation. So, the left hand side is balanced by a positive
value here, as a production term. So, rate of accumulation of mass of species A in the, in
the CV, is equal to rate of production by chemical reaction, homogeneous chemical
reaction in the CV, plus the net amount of species advected by the process of inflowing

fluid, and outgoing fluid, ok.

So now, let us define, just like we have done for a fluid, let us define a species density
rho A in terms of kilogram per meter cubed. And, we can also define a velocity u; here, it
is a vector of species a. And therefore, we can consider the flow rate of species A through
a particular phase can be rho A times u A dotted with the area vector of that particular
surface. And, we also keep in mind that, we have chosen the surfaces of this cubical box
to be aligned in the coordinate directions. So, with all those kind of, now, by now
familiar things, we can write the rate of accumulation of species within the control
volume as, the density times volume, which will give you the total mass of species A
within the control volume. And, variation with respect to time, dou by dt of that, will
give us rate of the accumulation of mass of species within the control volume, which is
the left hand side of this. And then, the mass flow rate in, is what is coming in through
the left phase, through the bottom phase, and through the back phase. And, in each case,
we multiply rho times the velocity component perpendicular to that particular surface,
times the area of that particular phase. For example, if you take the left phase, the area of
that phase is delta y times delta z, and the density is rho A at x, and u A at x; because, this

whole phase is located at x.

Similarly, through the back phase, the flow rate is given by w times the area of that
particular phase. So, w a, the velocity of species a, the w component times the area delta
x delta z, times rho A, here. And, all these things are evaluated at the midpoint of the
corresponding phases. And, we note that, the variables may have different values at the
midpoints of different phases. So, for example, rho A can be one value here, another
value here, and another value at the back phase; another value at the bottom phase; all
that. And similarly, u, v, w, can also change at every point within this, and specifically, at

the centers of each of these phases. So, all the quantities here, all the variable values



here, are always evaluated at the centers of the corresponding phases here. So, with that
thing, we can, we can say that, we know how to evaluate the rate of accumulation term.
We know how to evaluate the rate of entry, rate of inflow, and rate of outflow. Now, the
rate of reaction, for the moment, we are calling it as r A, as per the chemical engineering

practice.
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So, this is rate of production by homogeneous reaction. Why we are calling it as
homogeneous reaction is that, this is a production term per meter cubed, and its kilogram
per second per meter cubed, of this particular quantity of species A is being produced.
And, if you multiply this by the volume, then, it will give you the kilograms per second.
So, that is, rate of production of the species in the control volume. So, this is a

volumetric generation term is what is mentioned here.

So, this is what will be coming out on, on this side here, because, this is rate of
production, times the volume delta x delta y delta z, will give us the kilograms per
second of production of species A in the entire control volume, and to that extent, we put
this as a volumetric source term here. So, we add all the terms as usual, and then, divide
by the product of the volume delta x delta y delta z, and take the limit as delta x tends to

zero, delta y tends to zero, and delta z tends to zero. And then, we have an equation here,



which is very similar to what we have for the mass conservation equation that we had
earlier, except that, we have the subscript a denoting that, this is applicable for species A
only. And, even the velocity components r for the species A only, and this is a summation
over the three quantities, so that, you have dou by dou x of rho u, plus dou by dou y of
rho v, plus dou by dou z of rho w; that is there. And, on the right hand side, we have the
volumetric source term here. So, this can also be put in the vectorial form like this. So,
this is very similar to the mass balance equation that we had earlier, but, in this particular
case, this is only for a particular species of the entire mixture, and the species can be
produced, or destroyed, by the, by a chemical reaction; and, to allow for that possibility,
we are creating this rate of generation term here. In the absence of chemical reactions,
this will be zero, and we will have just this. But, and, this is a species conservation

equation.

We can go back, just like we have derived the mass conservation equation, we can also
derive the species momentum conservation equation, and species energy conservation
equation. So, if you do that, then, for each species, we will have a mass conservation
equation, 3 momentum conservation equation, 1 energy conservation equation, like that.
And, that becomes very tedious and very large set of equations, when you consider large
number of species. And, number of species can be quite, quite high in certain cases; for
example, in combustion, people are dealing with tens, and even hundreds of species. So,
in that case, the number of equations becomes very complicated, complicatedly in large.
So, what we would like to do is, to work with the entire continuum, and we, which is
essentially a mixture of different species, and we define the mixture properties in the
following way. So, the mass density of mixture rho is given by sum over all the phases,
all the species, rho A, rho alpha. So, rho alpha is the mass density of species A, species

alpha, and when summed over all the species, that will give us the density here.

So, now, you can define the mass reaction y of alpha, species alpha, is given by rho of
alpha divided by rho. This is the mass fraction, and not the mole fraction. If you know
the molecular weights, and all that thing, it is possible to come out with a mole fraction
also. It is not a difficult thing to do. Right now, we do not need it. Similarly, the mass
velocity of mixture which we are calling as u here, without any subscript; whereas, here,

we have a subscript A; we have a subscript A here. So, without any subscript, we can



define this as sum over all species of rho alpha u alpha, divided by the mass density, will
give us the mass velocity. So, rho times u is the total flow rate, flux of that particular
mixture, and, that is equal to sum of the individual fluxes. So, there is nothing

complicated about it; it is pretty obvious definitions.
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And, in order to get the, an expression which is more convenient, we do some algebraic
manipulations, mathematical manipulations. So, we add this del dot rho A times u, where
u here, is now the value of the mixture property, not of the individual property. And so,
we have, this plus this equal to r A as the original equation. So, we add and subtract this
quantity on both sides, and then, we can keep this here, and then, take it on to the other
side, and we have del dot rho A u, and we have del dot rho A u A. So, we can write this

thing as del dot rho A times u minus u A, when you take it to the right hand side.

So, this whole equation here, the original equation to which we have added and
subtracted this thing, can be written in this particular form, where dou rho by, dou by dou
t of rho A, plus del dot rho A times u, this is the mixture velocity, equal to minus del dot J
A, this is the flux of that particular species, plus the rate of production term here. And,
the flux here, J A is given as rho A times u A, minus u, which is a mixture velocity here.

Now, this flux here, can be modeled using Fick’s Law of Diffusion, and so, this is given



as minus diffusivity of A, times gradient of the mass fraction here. So, we have to be
careful about the units of this. There are different ways of formulation of Ficks’s law of
diffusion, in terms of molecular mole fractions, and mass fractions, and all that. We have
to make sure that, that definition is correct, and once you substitute this into this, we
have an equation which involves rho by rho A, and all these things here. and so, this is
the conservation equation for species a, and if you write down for all the species, and
then, you add up all of them, then, for example, you get dou by dou t of rho A plus rho B
plus rho C of all of them, and all the rho s summed up together will give you rho. And

similarly, all of this will give us, give you rho here. So, you get this.

And, the formulation of the diffusive term, diffusive fluxes, and the production terms
here, is such that, they will all add up to zero; because, if a is being consumed in a
particular reaction, then, it is being, some other species is being, is produced. And, this is
all happening within the control, within the liquid, the fluid continuum. So, there are
some rates which are positive, and some rates are negative, for a different species. So,
when you add up all of them, on a mass basis, this goes to zero. And similarly, sum over
all the species of the diffusion thing, will also become zero, so that, we have, we recover
the mixture continuity equation as this. So, we have a species balance equation, which is
written in the form of involving the mass fraction of species, and if you divide this whole
thing by rho here, you get rho A by A, which is Y A here. So, you have Y A here, and you
have Y A here. And so, this whole species conservation equation can be represented in
terms of a new variable, which is the mass fraction of species a. And, the rate of
production of term is also divided by the mixture density; and so, that will give you
the... This will be slightly different, ok.
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So, the overall mixture equations can now be represented like this. Mixture continuity
equation, mixture momentum equation will be very similar to what we have earlier; and
then, mixture energy equation will have the usual term here, and then, the advection
term, the conduction term, heat conduction term, the viscous dissipation term. But, there
is also an extra term which is arising from the fact that, the reactions that are happening
inside the liquid, inside the fluid continuum, can be, as a whole, they can be exothermic,
or endothermic. So, depending on the progress of that particular reaction, there is a
corresponding heat generation. So, this is the heat of reaction. This needs to be properly

evaluated, and this becomes an extra equation, for our energy equation.

So, the mixture equations, to summarize, are, for every species, you have an extra
equation here. So, if you have 3 species, you have 3 species balance equations. Now,
when you add up all the 3 species balance equations, you get the mixture continuity
equation. So, you either have 3 equations here, and no equation here, or you can have 2
species balance equation, and 1 mixture continuity equation. So, together, the species
mass balance and mixture mass balance equations will constitute number of equations,
which is equal to the total number of species. And then, we have 1 mixture momentum
equation, which is like the same thing, except that, you know how mixture velocity and
you have mixture density here, and mixture viscosity; and, those properties are based on



the mass fractions, so, mole fractions of those individual species. And then, you have
mixture density, mixture specific heat, and thermal conductivity here. And, together, we
have an overall source term coming, which is essentially the heat of reaction of that
particular, overall set of reaction scheme. So, this is the mixture equations, and in the
case, in the absence of chemical reactions, this r A's and Q R s will be zero. And, if you
have a mass transfer with dissolution, that dissolution is exothermic, endothermic, you
can still have this. And, you can see a role for mass transfer. Mass transfer will change
the mass fraction; you can have mass fraction gradients, and that is what is being

resolved by solving this equation.

So, this scheme here can give rise to concentration gradients; can be used to evaluate
concentration gradients. And, along with the concentration gradients, just as we have
temperature gradients leading to heat transfer, convective, conductive heat transfer, you
also have here, both the convective effect, and the conductive effect of the mass transfer
is captured in this set of equations, through the introduction of a new variable, which is
the mass fraction of the species. And, the number of additional equations depends on the
number of species that are present. If there are N S numbers of species, the number of
additional equations that come up is n s minus 1, because we already have the continuity
equation that is accounted for. And then, we also have this Q R here. Now, we still need
to specify what this rate of reaction is, ok.
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So, when we consider chemical reaction engineering applications, we need to have
following additional things. We need to have a generalized chemical reaction scheme, the
reaction kinetics, the reaction rate, which may be determines, in cases by turbulent
micro-mixing, and other cases, by laminar diffusion of species. And, we will then look at
the overall set of equations to be solved for flows with chemical reaction included, ok.
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So, when you are looking at flows with chemical reaction, the reaction mechanisms and
kinetics of the information must be known. It is a part of the input. CFD cannot tell you
what, what is a reaction mechanism. If you know the mechanism, then, it may say,
because of the prevailing temperatures, this may be the rate of reaction, as per this
Arrhenius rate of reaction, and all those kind of things. So, there is a framework that is
needed to specify, and include all these reactions. So, there is a framework of calculation,
which, that is present, and that we are going to see, which exists to couple this chemical
reaction scheme with the fluid flow, and heat transfer, and mass transfer effects, all of
which commit to the overall rate of reaction. And, this particular framework here,
assumes that, we are dealing with the mixture. So, all reactions, and products, are treated
as constituents of a mixture. And, consider a set of N R reactions involving N S species,
denoted by X i here, and you have a stoichiometry of this each set, each reaction scheme
within the set of reaction scheme is specified here. For example, you have species 1, and
species 2, and all this species are participating with this stoichiometric coefficients in this
reaction 1. So, you have a species number, and reaction number. So, and, you have
reaction, on the reactant side here, and then, you have the product side. So, this is a typo
here; this is reactant 2, r 2, ok.

So, you have j number of these equations, representing j reactions, which are, which are



here. And, there are N S number of species, X 1, X 2, X N S, like this. It is not necessary
that all the species participate in all the reactions, and it is not necessary that, there are
certain reactants, and there are certain products. Sometimes, the same species may
appear as a product, and sometimes it may appear as a, as a reactant; and this kind of a

generalized scheme is what we start out with.
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And, the rates of reactions of each of these are specified; for example, in the case of rate
controlling reaction, in the form of a forward reaction rate, and a backward reaction rate,
and concentration and exponents, here; so, expressing the order of the reaction. So, we
can have, either this type of chemical kinetics controlled reaction, or, we can also have a

turbulence dominated kind of thing, which we are not going to discuss here.



(Refer Slide Time: 30:36)

Equations Solved for Flows with Chemical Reactions

* Having got the reaction kinctics mformation, we solve additional (NS

|} Specics MAss CoNSErvation equations

AN
LV ) )-VAIYY, )= S, =W N, -0, R

Y1+ mass fraction of species 1= Wi [Xi} p

Wi = molecular weight of species &
+ Neod to include heat source due 1o chémical reaction in encrgy eqn
N SR S it Yo ~a0 W

AHR = heat of reaction, Hri = heat of formation of species i

So, this is a general framework for expression of the reaction here, in terms of specified
orders of the reaction, concentration of the reactants and products, and forward and
backward reaction rates. And, these reaction rates are expressed in terms of a Arrhenius
coefficients, in terms of activation energy, and then, temperature exponent and a pre-

exponential factor.

All these things must be given. The entire reaction scheme must be known. The
stoichiometric coefficients must be known. The orders of the reactions must be known,
and the rate constants, the exponential factors, and all these things, must be known. If
you know all these things, then, as part of the calculation scheme of the equations that
we have already discussed, we know, at every point, what is the concentration of that
particular species. So, then, we can substitute those things, and get the rate of reaction.
And, from this rate of reaction, we can evaluate the overall heat source that is coming
out, for each reaction, times the delta h of that heat of reaction of that particular reaction,
and summed over all the reactions, will give us the total rate of heat generation, from set
of all these reactions. So, having got the reaction kinetics information, we solve
additional N S minus 1 species conservation equations. Here, we have expressed the
species balance equations in terms of the mass fraction of species i here. The advection

term, the diffusion term, and the source term, which is in terms of the molecular weights,



and the reaction rates of the j th reaction, and the stoichiometric coefficients of the
individual reactants species, as a reactant, and as a product. So, all these things will give
us the overall species conservation equation. The momentum conservation equations,
they do not change, except for the properties, which are now the functions of the
concentrational species. And then, we have the source term in the energy balance
equation; it is given in terms of the rates of the reaction, and the heat of the reaction, and

the stoichiometric coefficients.
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So, this completes the formulation for, as a kinetics control reaction, but if you have a,
more practical cases like combustion are much more complicated; and simplistic
treatment is done, where you have a fuel plus oxidant, giving rise to products, is a
simplistic reaction scheme, in which the reaction rate is given (( )), sometimes by
chemical kinetics alone, sometimes by turbulence alone, or may be as a combination of
the two. So, that is beyond the scope of our course here, and we will, we can say that, we
can look at a calculation framework, which is summarized in this slide, for flows with
chemical reactions, in which we have a specialized form of the species balance equation
N S minus 1 number of species balance equations; 1 overall continuity equation, 1
overall mixture momentum equation, the 3 in the 3 directions, and an overall energy

equation, with an additional heat source expression coming here, from the reaction. So,



in the next class, which will be in the form of a tutorial, we will try to write down these
things on the board, and try to see exactly what these equations are. And then, try to put

them in a common form, which we will then try, in the next module, to understand how

to solve numerically.

Thank you.



