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Lecture – 19 

Practical cases of fluid flow with mass transfer in CFD point of view 

 

In the last lecture, we have considered the case of heat transfer and we have looked at 

what kind of equations would represent a flow with heat transfer; that is, including the 

velocity, pressure and temperature. We derived a set of equations, which are summarized 

here. 
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The governing equations for incompressible, constant property flow with heat transfer. 

We have a continuity equation, and a momentum conservation equation, the 3 

momentum in the 3 directions; and then, we have an energy conservation equation, in 

which, through which, temperature is brought out as a free variable. So, the set of these 5 

equations together, have as variables the 3 velocity components u, v, p, u, v, w, the 

pressure, and the temperature, as a set of 5 variables. And, the solution of all these things 

requires it in material properties which include the density, the viscosity, kinematic 

viscosity, thermal conductivity, and the specific heated constant pressure. So, with these 



things, it is possible to write down the set of governing equations. 
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And, we considered how these governing equations could represent the case of 

convective and conductive heat transfer that we know of, without having to specify any 

heat transfer coefficient. In the case of radiative heat transfer, of course, we have seen 

that, we need to do lot more work in order to get a proper description of radiative heat 

transfer, and that radiative heat transfer is not included in the set of equations which we 

have just now seen. 

In today’s lecture, we are going to do something similar for mass transfer. If you have a 

flow with mass transfer, then, what are the equations that will describe this. So, we are 

going to look at mass transfer applications, and, we will try to structure it in a proper 

way, so as to understand it in the short amount of time that is available for us. 
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So, we are going to look at the overview. We will take an overview of the approach to 

mass transfer within the framework of CFD. We have seen that, within the framework of 

CFD, heat transfer requires, in a certain way, is treated, is done, in a certain way. So, how 

do we do mass transfer in this? And, as part of this, we will be deriving the species 

balance equation, a mass conservation equation of species. And then, we will also look, 

we will derive the conservation equations of momentum and energy for mixtures, 

because, mass transfer requires us to have at least 2 species, so that, one species is going 

from one part of the fluid domain into another part of the fluid domain, so that, there is 

mass transfer between, across gradients, and all that. That requires us to identify species. 

And so, we are considering the fluid now to be a mixture of different species, and the 

approach that we have in CFD is that, we have separately, species balance equations, and 

we have, also have a mixture balance equations. 

So, those corresponding equations are what we are going to derive, in the rest of the 

lecture. The approach is given, summarized, in this slide. 



(Refer Slide Time: 03:50) 

 

We assume the fluid to be a mixture of various species, and we take account of the 

concentration of individual species, and components. For this, we solve the balance 

equation, a species balance equation. And, we define mixture properties based on 

individual species concentrations. And, we solve the momentum and energy conservation 

equations for the mixture, rather than for the individual species. If you do that, then, we 

have too many variables, and it is not worth all the trouble. It is possible to make some 

simplifying assumptions, which can be restrictive in certain cases.  

It is possible to make those kind of assumptions, and reduce the complexity of the 

problem, and bring it into a mixture momentum balance equation, and a mixture energy 

balance equation, but, a species mass balance equation. So, with this kind of formulation, 

it is possible to tackle mass transfer with, and without chemical reaction. And, the effect 

of the chemical reactions can be incorporated. In the case of homogenous reactions, these 

enter into the overall calculations scheme, in the form of, either a source term, or a sink 

term, of the species balance equation. So, there is a certain rate of generation, or rate of 

destruction of a species, because of chemical reactions. We are not considering nuclear 

reactions. Therefore, there is no destruction, or generation species from that. But, a 

chemical reaction can change the species, although the elementary balance always has to 

be satisfied. 



So, what we are looking at is the species balance equation, and not the elemental balance 

equation, and that is something that we would like to highlight, as part of the derivation 

here. In the case of heterogeneous reactions involving 2 different species, heterogeneous 

reaction between a solid and a fluid phase is, obviously, coming as a boundary condition, 

because, we do not, we are looking at fluid mechanics.  

So, the solid is a boundary, and so, any reaction between the solid and the fluid here, may 

come in as a boundary condition, in case, the solid species is on the walls of that 

particular fluid domain. If it is somewhere inside, finely dispersed, then, it may come as 

a, as a homogeneous source term. And, in the case of gas – liquid, or gas – solid, liquid – 

solid, gas – solid - liquid systems, which are finely dispersed throughout, where you do 

not have a clear separation of the domains, then, we have to do multiphase flow 

modeling, which is beyond the scope of this particular course. So, we are looking at, this 

is the overall approach.  

So, when we want to deal with mass transfer, we have to do much more than the simple 

Navier Stokes equation. We need to have species balance equations; we need to have 

mixture balance equations; and, we need to have mixture momentum, and energy balance 

equations. And then, we need to have a framework for dealing with chemical reactions. 

So, we will do these things step by step. 
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So, we have already created a template for a conservation equation, for deriving the 

corresponding conservation equation. And, for example, for the mass conservation 

equation for a fluid, we considered a control volume, and then, we stated that, ‘the rate of 

accumulation mass within that control volume, in the absence of any, any sources, or 

sinks, is given by the difference between the rate at which it is entering, and the rate at 

which it is leaving here’. We can do something similar for a species conservation 

equation. 
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We take our magical cubical box, having delta x in the x direction, and having a height of 

delta y in the y direction, and a depth of delta z in the z direction here, with an origin 

which is located right there, which is xyz, so that, this point is x plus delta x by z; and 

this point is, x plus delta x, y plus delta y, z; and this point here is, x plus delta x, y plus 

delta y, z plus delta z. So, that way, we can identify all the 8 vertices of this box, and we 

can work with that. So, here, we are making a statement of the species conservation 

equation verbally, like, rate of accumulation of mass of species A in the CV, in the 

control volume, is equal to rate at which the species A enters the control volume, minus 

the rate at which it leaves the control volume, plus rate of production by homogeneous 

chemical reactions inside the control volume, ok. 

So, we can consider that, throughout this, we note that, this particular volume, is in 

infinitesimal control volume in the fluid continuum, and we are saying that, this fluid 

continuum contains species A in a certain concentration. And, because of this 

concentration, and because of the presence of other species, species A can be either 

produced, or destroyed, used up, because of chemical reaction. And, this chemical 

reaction is happening in the, as a homogeneous chemical reaction; that is, in the same 

phase, either, within the liquid, or within the gas, within the fluid that we are considering 

here, and it is happening everywhere. So, that rate of production is what is considered 



here. In the case of destruction, this term will be negative. And, why we put plus here, 

because, in the absence of this rates at which it is entering, and this thing, production of 

the species will lead to accumulation. So, the left hand side is balanced by a positive 

value here, as a production term. So, rate of accumulation of mass of species A in the, in 

the CV, is equal to rate of production by chemical reaction, homogeneous chemical 

reaction in the CV, plus the net amount of species advected by the process of inflowing 

fluid, and outgoing fluid, ok. 

So now, let us define, just like we have done for a fluid, let us define a species density 

rho A in terms of kilogram per meter cubed. And, we can also define a velocity u; here, it 

is a vector of species a. And therefore, we can consider the flow rate of species A through 

a particular phase can be rho A times u A dotted with the area vector of that particular 

surface. And, we also keep in mind that, we have chosen the surfaces of this cubical box 

to be aligned in the coordinate directions. So, with all those kind of, now, by now 

familiar things, we can write the rate of accumulation of species within the control 

volume as, the density times volume, which will give you the total mass of species A 

within the control volume. And, variation with respect to time, dou by dt of that, will 

give us rate of the accumulation of mass of species within the control volume, which is 

the left hand side of this. And then, the mass flow rate in, is what is coming in through 

the left phase, through the bottom phase, and through the back phase. And, in each case, 

we multiply rho times the velocity component perpendicular to that particular surface, 

times the area of that particular phase. For example, if you take the left phase, the area of 

that phase is delta y times delta z, and the density is rho A at x, and u A at x; because, this 

whole phase is located at x. 

Similarly, through the back phase, the flow rate is given by w times the area of that 

particular phase. So, w a, the velocity of species a, the w component times the area delta 

x delta z, times rho A, here. And, all these things are evaluated at the midpoint of the 

corresponding phases. And, we note that, the variables may have different values at the 

midpoints of different phases. So, for example, rho A can be one value here, another 

value here, and another value at the back phase; another value at the bottom phase; all 

that. And similarly, u, v, w, can also change at every point within this, and specifically, at 

the centers of each of these phases. So, all the quantities here, all the variable values 



here, are always evaluated at the centers of the corresponding phases here. So, with that 

thing, we can, we can say that, we know how to evaluate the rate of accumulation term. 

We know how to evaluate the rate of entry, rate of inflow, and rate of outflow. Now, the 

rate of reaction, for the moment, we are calling it as r A, as per the chemical engineering 

practice. 
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So, this is rate of production by homogeneous reaction. Why we are calling it as 

homogeneous reaction is that, this is a production term per meter cubed, and its kilogram 

per second per meter cubed, of this particular quantity of species A is being produced. 

And, if you multiply this by the volume, then, it will give you the kilograms per second. 

So, that is, rate of production of the species in the control volume. So, this is a 

volumetric generation term is what is mentioned here. 

So, this is what will be coming out on, on this side here, because, this is rate of 

production, times the volume delta x delta y delta z, will give us the kilograms per 

second of production of species A in the entire control volume, and to that extent, we put 

this as a volumetric source term here. So, we add all the terms as usual, and then, divide 

by the product of the volume delta x delta y delta z, and take the limit as delta x tends to 

zero, delta y tends to zero, and delta z tends to zero. And then, we have an equation here, 



which is very similar to what we have for the mass conservation equation that we had 

earlier, except that, we have the subscript a denoting that, this is applicable for species A 

only. And, even the velocity components r for the species A only, and this is a summation 

over the three quantities, so that, you have dou by dou x of rho u, plus dou by dou y of 

rho v, plus dou by dou z of rho w; that is there. And, on the right hand side, we have the 

volumetric source term here. So, this can also be put in the vectorial form like this. So, 

this is very similar to the mass balance equation that we had earlier, but, in this particular 

case, this is only for a particular species of the entire mixture, and the species can be 

produced, or destroyed, by the, by a chemical reaction; and, to allow for that possibility, 

we are creating this rate of generation term here. In the absence of chemical reactions, 

this will be zero, and we will have just this. But, and, this is a species conservation 

equation. 

We can go back, just like we have derived the mass conservation equation, we can also 

derive the species momentum conservation equation, and species energy conservation 

equation. So, if you do that, then, for each species, we will have a mass conservation 

equation, 3 momentum conservation equation, 1 energy conservation equation, like that. 

And, that becomes very tedious and very large set of equations, when you consider large 

number of species. And, number of species can be quite, quite high in certain cases; for 

example, in combustion, people are dealing with tens, and even hundreds of species. So, 

in that case, the number of equations becomes very complicated, complicatedly in large. 

So, what we would like to do is, to work with the entire continuum, and we, which is 

essentially a mixture of different species, and we define the mixture properties in the 

following way. So, the mass density of mixture rho is given by sum over all the phases, 

all the species, rho A, rho alpha. So, rho alpha is the mass density of species A, species 

alpha, and when summed over all the species, that will give us the density here. 

So, now, you can define the mass reaction y of alpha, species alpha, is given by rho of 

alpha divided by rho. This is the mass fraction, and not the mole fraction. If you know 

the molecular weights, and all that thing, it is possible to come out with a mole fraction 

also. It is not a difficult thing to do. Right now, we do not need it. Similarly, the mass 

velocity of mixture which we are calling as u here, without any subscript; whereas, here, 

we have a subscript A; we have a subscript A here. So, without any subscript, we can 



define this as sum over all species of rho alpha u alpha, divided by the mass density, will 

give us the mass velocity. So, rho times u is the total flow rate, flux of that particular 

mixture, and, that is equal to sum of the individual fluxes. So, there is nothing 

complicated about it; it is pretty obvious definitions. 
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And, in order to get the, an expression which is more convenient, we do some algebraic 

manipulations, mathematical manipulations. So, we add this del dot rho A times u, where 

u here, is now the value of the mixture property, not of the individual property. And so, 

we have, this plus this equal to r A as the original equation. So, we add and subtract this 

quantity on both sides, and then, we can keep this here, and then, take it on to the other 

side, and we have del dot rho A u, and we have del dot rho A u A. So, we can write this 

thing as del dot rho A times u minus u A, when you take it to the right hand side. 

So, this whole equation here, the original equation to which we have added and 

subtracted this thing, can be written in this particular form, where dou rho by, dou by dou 

t of rho A, plus del dot rho A times u, this is the mixture velocity, equal to minus del dot J 

A, this is the flux of that particular species, plus the rate of production term here. And, 

the flux here, J A is given as rho A times u A, minus u, which is a mixture velocity here. 

Now, this flux here, can be modeled using Fick’s Law of Diffusion, and so, this is given 



as minus diffusivity of A, times gradient of the mass fraction here. So, we have to be 

careful about the units of this. There are different ways of formulation of Ficks’s law of 

diffusion, in terms of molecular mole fractions, and mass fractions, and all that. We have 

to make sure that, that definition is correct, and once you substitute this into this, we 

have an equation which involves rho by rho A, and all these things here. and so, this is 

the conservation equation for species a, and if you write down for all the species, and 

then, you add up all of them, then, for example, you get dou by dou t of rho A plus rho B 

plus rho C of all of them, and all the rho s summed up together will give you rho. And 

similarly, all of this will give us, give you rho here. So, you get this.  

And, the formulation of the diffusive term, diffusive fluxes, and the production terms 

here, is such that, they will all add up to zero; because, if a is being consumed in a 

particular reaction, then, it is being, some other species is being, is produced. And, this is 

all happening within the control, within the liquid, the fluid continuum. So, there are 

some rates which are positive, and some rates are negative, for a different species. So, 

when you add up all of them, on a mass basis, this goes to zero. And similarly, sum over 

all the species of the diffusion thing, will also become zero, so that, we have, we recover 

the mixture continuity equation as this. So, we have a species balance equation, which is 

written in the form of involving the mass fraction of species, and if you divide this whole 

thing by rho here, you get rho A by A, which is Y A here. So, you have Y A here, and you 

have Y A here. And so, this whole species conservation equation can be represented in 

terms of a new variable, which is the mass fraction of species a. And, the rate of 

production of term is also divided by the mixture density; and so, that will give you 

the… This will be slightly different, ok. 
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So, the overall mixture equations can now be represented like this. Mixture continuity 

equation, mixture momentum equation will be very similar to what we have earlier; and 

then, mixture energy equation will have the usual term here, and then, the advection 

term, the conduction term, heat conduction term, the viscous dissipation term. But, there 

is also an extra term which is arising from the fact that, the reactions that are happening 

inside the liquid, inside the fluid continuum, can be, as a whole, they can be exothermic, 

or endothermic. So, depending on the progress of that particular reaction, there is a 

corresponding heat generation. So, this is the heat of reaction. This needs to be properly 

evaluated, and this becomes an extra equation, for our energy equation. 

So, the mixture equations, to summarize, are, for every species, you have an extra 

equation here. So, if you have 3 species, you have 3 species balance equations. Now, 

when you add up all the 3 species balance equations, you get the mixture continuity 

equation. So, you either have 3 equations here, and no equation here, or you can have 2 

species balance equation, and 1 mixture continuity equation. So, together, the species 

mass balance and mixture mass balance equations will constitute number of equations, 

which is equal to the total number of species. And then, we have 1 mixture momentum 

equation, which is like the same thing, except that, you know how mixture velocity and 

you have mixture density here, and mixture viscosity; and, those properties are based on 



the mass fractions, so, mole fractions of those individual species. And then, you have 

mixture density, mixture specific heat, and thermal conductivity here. And, together, we 

have an overall source term coming, which is essentially the heat of reaction of that 

particular, overall set of reaction scheme. So, this is the mixture equations, and in the 

case, in the absence of chemical reactions, this r A s and Q R s will be zero. And, if you 

have a mass transfer with dissolution, that dissolution is exothermic, endothermic, you 

can still have this. And, you can see a role for mass transfer. Mass transfer will change 

the mass fraction; you can have mass fraction gradients, and that is what is being 

resolved by solving this equation. 

So, this scheme here can give rise to concentration gradients; can be used to evaluate 

concentration gradients. And, along with the concentration gradients, just as we have 

temperature gradients leading to heat transfer, convective, conductive heat transfer, you 

also have here, both the convective effect, and the conductive effect of the mass transfer 

is captured in this set of equations, through the introduction of a new variable, which is 

the mass fraction of the species. And, the number of additional equations depends on the 

number of species that are present. If there are N S numbers of species, the number of 

additional equations that come up is n s minus 1, because we already have the continuity 

equation that is accounted for. And then, we also have this Q R here. Now, we still need 

to specify what this rate of reaction is, ok. 
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So, when we consider chemical reaction engineering applications, we need to have 

following additional things. We need to have a generalized chemical reaction scheme, the 

reaction kinetics, the reaction rate, which may be determines, in cases by turbulent 

micro-mixing, and other cases, by laminar diffusion of species. And, we will then look at 

the overall set of equations to be solved for flows with chemical reaction included, ok. 
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So, when you are looking at flows with chemical reaction, the reaction mechanisms and 

kinetics of the information must be known. It is a part of the input. CFD cannot tell you 

what, what is a reaction mechanism. If you know the mechanism, then, it may say, 

because of the prevailing temperatures, this may be the rate of reaction, as per this 

Arrhenius rate of reaction, and all those kind of things. So, there is a framework that is 

needed to specify, and include all these reactions. So, there is a framework of calculation, 

which, that is present, and that we are going to see, which exists to couple this chemical 

reaction scheme with the fluid flow, and heat transfer, and mass transfer effects, all of 

which commit to the overall rate of reaction. And, this particular framework here, 

assumes that, we are dealing with the mixture. So, all reactions, and products, are treated 

as constituents of a mixture. And, consider a set of N R reactions involving N S species, 

denoted by X i here, and you have a stoichiometry of this each set, each reaction scheme 

within the set of reaction scheme is specified here. For example, you have species 1, and 

species 2, and all this species are participating with this stoichiometric coefficients in this 

reaction 1. So, you have a species number, and reaction number. So, and, you have 

reaction, on the reactant side here, and then, you have the product side. So, this is a typo 

here; this is reactant 2, r 2, ok. 

So, you have j number of these equations, representing j reactions, which are, which are 



here. And, there are N S number of species, X 1, X 2, X N S, like this. It is not necessary 

that all the species participate in all the reactions, and it is not necessary that, there are 

certain reactants, and there are certain products. Sometimes, the same species may 

appear as a product, and sometimes it may appear as a, as a reactant; and this kind of a 

generalized scheme is what we start out with. 
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And, the rates of reactions of each of these are specified; for example, in the case of rate 

controlling reaction, in the form of a forward reaction rate, and a backward reaction rate, 

and concentration and exponents, here; so, expressing the order of the reaction. So, we 

can have, either this type of chemical kinetics controlled reaction, or, we can also have a 

turbulence dominated kind of thing, which we are not going to discuss here. 
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So, this is a general framework for expression of the reaction here, in terms of specified 

orders of the reaction, concentration of the reactants and products, and forward and 

backward reaction rates. And, these reaction rates are expressed in terms of a Arrhenius 

coefficients, in terms of activation energy, and then, temperature exponent and a pre-

exponential factor. 

All these things must be given. The entire reaction scheme must be known. The 

stoichiometric coefficients must be known. The orders of the reactions must be known, 

and the rate constants, the exponential factors, and all these things, must be known. If 

you know all these things, then, as part of the calculation scheme of the equations that 

we have already discussed, we know, at every point, what is the concentration of that 

particular species. So, then, we can substitute those things, and get the rate of reaction. 

And, from this rate of reaction, we can evaluate the overall heat source that is coming 

out, for each reaction, times the delta h of that heat of reaction of that particular reaction, 

and summed over all the reactions, will give us the total rate of heat generation, from set 

of all these reactions. So, having got the reaction kinetics information, we solve 

additional N S minus 1 species conservation equations. Here, we have expressed the 

species balance equations in terms of the mass fraction of species i here. The advection 

term, the diffusion term, and the source term, which is in terms of the molecular weights, 



and the reaction rates of the j th reaction, and the stoichiometric coefficients of the 

individual reactants species, as a reactant, and as a product. So, all these things will give 

us the overall species conservation equation. The momentum conservation equations, 

they do not change, except for the properties, which are now the functions of the 

concentrational species. And then, we have the source term in the energy balance 

equation; it is given in terms of the rates of the reaction, and the heat of the reaction, and 

the stoichiometric coefficients.  
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 So, this completes the formulation for, as a kinetics control reaction, but if you have a, 

more practical cases like combustion are much more complicated; and simplistic 

treatment is done, where you have a fuel plus oxidant, giving rise to products, is a 

simplistic reaction scheme, in which the reaction rate is given (( )), sometimes by 

chemical kinetics alone, sometimes by turbulence alone, or may be as a combination of 

the two. So, that is beyond the scope of our course here, and we will, we can say that, we 

can look at a calculation framework, which is summarized in this slide, for flows with 

chemical reactions, in which we have a specialized form of the species balance equation 

N S minus 1 number of species balance equations; 1 overall continuity equation, 1 

overall mixture momentum equation, the 3 in the 3 directions, and an overall energy 

equation, with an additional heat source expression coming here, from the reaction. So, 



in the next class, which will be in the form of a tutorial, we will try to write down these 

things on the board, and try to see exactly what these equations are. And then, try to put 

them in a common form, which we will then try, in the next module, to understand how 

to solve numerically. 

Thank you.  


