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Lecture – 16 

Navier-Stokes equation for simple cases of flow 

 

In the last tutorial lecture, we have derived the constitutive equation for a Newtonian 

fluid. Let us summaries the arguments for this. 
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We have linear momentum balance equation applied gives us this equation here, dou by 

dou t of rho ui plus dou by dou xj of rho uiuj equal to dou by dou xj by sigma ji plus rho 

gi, which is a body force. Now, in this case this has three equations, but too many 

unknowns here and even if you invoke the anglo momentum balance equation, we will 

have too many of the stresses here that are unspecified. 

So, we said that we break up the stress into hydro static components involving pressure 

as a comprehensive force, which is always normal and compressive, which is why we 

have the delta ij plus shear stress viscous stress which is induced due to relative motion 

and we studied the kinematics of deformation and we suggested that the deformation 

rates can be expressed in terms of linear combinations of this a deformation tensor and 

we seek a linear relation between the stresses that are induced by relative motion and the 

strain rate that are produced as a result of this relative motion, such that since this strain 



rate are expressible in terms of linear combination of the velocity gradients you could 

replace the stresses here by the velocity gradients here into this, so that we can get rid of 

all these unknowns. 

In the general case, we have this linear relation having 81 constants but, if you assume 

the solid body rotation not causing any stress because there is no deformation it is just 

rotation and stress translation, fluid translation does not produce any deformation rate. If 

we say that this is not causing any stress then this tensors here becomes asymmetric 

tensors expressed in terms of the d mn and there are other arguments also given raise to 

the same idea there and if you make the further assumption of fluid being isotropic then 

we have seen that the stress verses strain rate relation distortion strain rate relation can be 

expressed in terms of only two independent components constants which we call as mu 

and lambda here and the relation can be by expressed as tau ij as being given by mu dou 

ui by dou xj plus dou uj by dou xi plus lambda times dou uk by dou xk. 

Now, we substitute this into this expression here and this into this expression and we 

finally get the conservation equation like this. 
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So, these are the Navier-Stokes equation for a Newtonian fluid and any flow of a 

Newtonian fluid is governed by these equations. We have a continuity equation or the 

mass conservation equation which is dou by dou t of rho plus dou by dou xi of rho ui 

equal to 0 and linear momentum conservation equation with the angular momentum all 



thrown in with the Newtonian fluid assumptions thrown in that is the relation between 

stress and deformation strain rate is linear and the medium is isotropic. 

So, those are the two assumptions of the Newtonian fluid and once we do that we can 

substitute that sigma as minus p delta xj. So, that it gives us minus dou p by dou xi here 

plus dou by dou xj of the stress components here gives raise to this equation here and 

here we see that there are terms involving repeated index j here and repeated index j and 

repeated index i here and repeated index k here and all these things will give raise to a 

set of 4 equations; 1 is the continuity equation and 3 momentum equations here and these 

equations together have the three velocity components that is u, v, w in the Cartesian 

coordinate system and p pressure as the unknown variables and they also involve three 

material properties; the density, the first coefficient of viscosity and the second 

coefficient of viscosity. 

So, if the fluid properties are given through an equation of state then we have four 

equations and four unknowns. So, this constitutes the set of Navier-Stokes equations and 

the formulation of the fluid flow problems. So, these four equations are the ones that we 

need to solve in order to describe any fluid flow situation. We also need to have a proper 

fluid domain in boundary conditions we will come to that later, but we will let us take a 

simplified form of this which is the case of incompressible constant property flow which 

for example, for most of the water flows without any heat transfer obey this kind of 

assumption. 
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So, in which case if you say that incompressible then density is constant. So, this 

becomes 0 here, rho can be taken out and then taken to the other side. So, we have dou ui 

by dou xi equal to 0 that becomes the continuity equation here rho can be taken out and 

put here one by one by dou here and mu can be replaced with the kinematic viscosity and 

since dou ui by dou xi equals to 0 therefore, dou uk by dou xk equals to 0. So, this whole 

second coefficient drops out and you have a simplified momentum conservation equation 

which is like this. So, you have a simplified continuity equation and momentum 

conservation equation here for the case of incompressible constant property Navier-

Stokes equations. 

So, this can be written in the vector form as del dot u equal to 0 and the momentum 

conservation equation can be written as del dot uu which is a dyadic tensor minus is an 

extra minus here one by rho gradient of pressure plus laplacian of the velocity vector 

plus the gravitational vector here. 

So, this vectorial from here is good for us to write the corresponding equations in other 

coordinate systems like polar coordinate systems, cylindrical polar coordinate system or 

spherical coordinate system and you can go to standard text books to have the definitions 

of the divergence operator and the del square operator and the gradient operator. To 

rewrite this in any orthogonal coordinate system that you that you fancy or that 

supplicable for a specific problem, for example, if you are looking at flow over a sphere 



then instead of using the Cartesian coordinate system, you might want to use a spherical 

coordinate system then you can take this from and then define from books on 

mathematics, what is a divergence operator in spherical coordinate system? What are the 

correspond components here and here and the gradient here? And you can write down 

the governing equations for the case of incompressible constant property flow. 
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So, this in a sense is the said to governing equations. We will come to the energy 

equation later. 

(Refer Slide Time: 08:56) 

 



And before we consider this further we would like to draw the distinction between the 

CFD approach and the non-CFD approach in terms of the problem formation. So, that is, 

we know these equations, the equations that we solve often in CFD are not the same as 

the equations that we would solve in your analytical solution in the non-CFD approach, 

and that is because the equations which govern the fluid flow even though they look 

fairly simple like this only second order partial difference equation, but this is non-linear 

equation and you have three coupled equations and you have more problems in the sense 

of their not being of the same mathematical character all the time. So, we will come back 

to that. So, despite the apparent simplicity it is not possible to get analytical solution to 

the exact equations. 

So, when we are doing the non-CFD approach then we make certain simplifying 

assumptions. These assumptions can be like inviscid flow, creeping flow, fully 

developed flow and boundary layer flow and all these things and we do not have to make 

these assumptions when we do the CFD. So, which is why it is important to see what we 

solve in CFD and what we solve in that in the analytical approach and that is the 

highlight that we are making here. 
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For example, in the distinction that we are trying to draw here, in inviscid flow we make 

the assumption of viscosity being equal to 0. So, then the momentum equations reduce to 

Euler’s equations and they become hyperbolic type of equation and for steady flow along 

the streamline you can have the momentum equations being written in the form of 

Bernoulli’s equation, Bernoulli’s principle p 1 plus rho gz 1 plus rho u 1 square by 2 

equal to p 2 plus rho gz 2 plus rho u 2 square by 2. 

So, this is another form of the governing equation which is very useful in many cases and 

it is been the cornerstone of aeronautical and turbo machinery applications long before 

computers were invented and widely used, but the inviscid flow assumption is not a 

practical assumption, for example, in many cases in cases you have the most famous of 

this is the D’Alembert’s paradox which means that if you have inviscid flow then you 

cannot have any drag force for flow over a sphere and similarly the coefficient discharge 

from an orifice will be equal to 1. So, those kinds of things are not practical and we 

know that when fluid flow is dragged and that phenomenon cannot be explained by the 

inviscid flow assumption. 
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Another assumption that we make is the creeping flow assumption and here we are 

assuming that the Reynolds number is much, much less than 1. So, that theconvective 

terms are set to 0 and equations reduce to transient or steady diffusion and these are 

primarily parabolic or elliptic in nature and you have some analytical solutions, for 

example, Stokes law for drag coefficient over a sphere is expressed in terms of 24 by 

Reynolds number and heat transfer from a sphere to stagnant surroundings. 

So, you have certain analytical results which are useful, but these are useful in some 

special circumstances that are Reynolds number much, much less than 1. So, these are 

not valid for Reynolds number greater than 1 and Reynolds number greater than 1 is not 

such an unusual thing, for example, the critical Reynolds number at which laminar 

turbulent transition takes place for a sphere a flow over a sphere is a Reynolds number of 

something like 200,000 not 2100 not 2300 not 1000, it is 200,000. So, whereas, this 

relation here, the Stokes law assumption is valid for Reynolds number less than 1. So, in 

many cases we cannot make use of this. 
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Another assumption that we often make in order to get some insight into fluid flow is the 

fully developed flow assumption. So, gradients in the flow direction except for driving 

force such a pressure, temperature and concentrations. We say that the gradients are 0 of 

other quantities and the gradients of these quantities are constant. So, that we reduce the 

problem to one-dimensional flow and you have only one non-zero velocity component 

and you have an elliptic character of equation. 

We will come back to that and we have Poiseuille flow in a pipe for which you have 

friction factor, which is defined which can be obtained as 16 by Reynolds number where 

the friction factor here is defined as the shear stress divided by half rho u square, where u 

is the average velocity and you also have the convective heat transfer coefficient 

expressed in terms of Nusselt number is 4.364 per wall heat flux constant and 3.65 for a 

temperature wall temperature constant cases. So, you can get these useful relations, but 

these are valid for laminar flow and only for the case of fully developed flow. If you 

have developing flow then this not valid, you also have certain relations forturbulent 

flow, but these are not valid for short ducts or non straight ducts which is often the case 

as we saw in the very first lecture of this course. We saw certain cases where you do not 

have fully developed flow and you do not have ducts of a constant cross section. So, in 

such a case applications of these relations become questionable. 
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And again one more common assumption that we make is the boundary layer flow in 

order to get some analytical results and so gradients in along flow direction is much less 

than those perpendicular flow to the surface in the vicinity of the solid wall and well 

away from the wall, the flow is virtually inviscid and it can be used to develop, handle 

developing flow, for example, the entry flow in a problem in a pipe can be done using 

this kind of thing and you have useful relation for a laminar flow over a flat plate. You 

have certain relations for the friction factor and then for heat transfer coefficient and 

mass transfer coefficient, but these relations are not valid for bluff bodies, so that means, 

in the sense, where you do not have a thin boundary layer and you have strong where a 

pressure gradients and non-cylinder bodies where the l by d ratio isahsmall its not very 

large and also for separated flows and very close to stagnation points where the boundary 

layer thickness is large compared to the distance it covers along the surface. So, these are 

all useful things, but these are not for the general case 
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And we can also do the empirical thing. 
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But these are not for the general case in the general case we have only the Navier-Stokes 

equations that are applicable and these are the things that we try to solve. So, that when 

we solve the CFD problem, we do not make any assumptions as to whether the flow is 

the creeping flow, whether it is boundary type of flow or fully developed flow and all 

that. 



These things come in the specification of the flow domain and the boundary conditions 

which we will see later on and we specify those boundary conditions, and we identify the 

flow domain if the flow happens to be critical creeping flow because the velocity that is 

specified is small then the creeping flow solution will emerge from your CFD 

conclusions and if the flow velocity is high and there is a boundary layer type of 

behaviour is expected then your CFD simulations will show a boundary layer type of 

flow solutions. 

If you were to draw the velocity profiles, you see that the velocity gradients are very 

large close to the wall and away from the wall. They are very small, you do not have to 

make the assumption of boundary layer, you do not have to identify the thickness you 

just have to specify the boundary conditions and identify the flow domain. 

So, we do not make these assumptions. We start with the flow governing equations and 

then we solve this, so that is important point that I want to mention herethat in when we 

are doing the CFD we solve the fundamental equations which is a consideration of mass 

momentum and we will see later on energy equations without any assumptions. So, that 

gives the strength of argument for the goodness of the CFD solution whereas, if we have 

to make any assumption about creeping flow or flow and all that then we need to have 

very low velocities. 

In the case of creeping flow and very long ducts in the case of the same cross section, in 

the case of fully developed flow those things are not found in practice and so those 

assumptions are defeating when you want to apply to practical case, but we do not have 

that limitation with CFD, but the equations that we have derived are not universally 

always valid. So, that is another important point that we have to bring out keep in mind. 
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When we apply these equations and one of the simplest assumptions situations where the 

CFD equations that we are writing down, the Navier-Stokes equation that we are writing 

down can be questioned is for non-Newtonian fluids. 

We have made an assumption of a linearity between shear stress and the shear rate or the 

strain rate shear strain rate and so that is the linear assumption, but there are number of 

fluids which exhibits a non-linear variation. This kind or relation where and you can also 

see this kind of you have a pseudoplastic or dilatant variation and you can have variation 

with respect to time, and we can also have more complicated behaviour like that of a 

viscoelastic fluid, where the shear rate or the stress verses shear rate does not depend on 

the local values. 

The stress does not depend on just the shear rate that it is present locally. So, that is train 

not just equal to mu dou u by dou y at a particular point tau at a particular point xy is not 

equal to mu dou u by dou y at xy, but it also depends on the previous history, time 

history of the deformation that the fluid element has gone through. 

When we say previous history, we can only handle short distance, short memory kind of 

things, but it is it exhibits therefore; a solid like behaviour and a fluid like behaviour and 

these are called viscoelastic fluid. 
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So, that is much more complicated, modelling that is required for this. So, that kind of 

non-Newtonian fluid behaviour is something that our equations that we are solving in 

this course are not applicable. 
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So, there are also other cases like flow through porous media in which the equations that 

we have derived are not applicable because part of the flow domain is occupied by the 

solid only part of bit is available for flow and even then you do not have a simple straight 

forward flow through that, you can have interconnected porous of varying cross section 



and all that. So, that requires a special treatment and that treatment is not there in the 

equations that we have derived, for example, and similarly grid movement calls for extra 

terms which are related to the velocity of the grids. So, there again these equations in the 

form that we have derived are not applicable. 

Turbulent flow is a very special case where we are getting chaos, chaotic type of flow 

behaviour from the deterministic equations that we have derived and. So, there is lot of 

theory behind thatand then we have to have special forms of equations for thatsimilarly 

when we have the multiphase flow where we do not have a single fluid single phase, but 

two phases then again we have some special considerations that come into picture. 

So, all these practical cases, we have to have an extended set of equations and the 

equations that we have derived are not any longer fundamental. So, what we claim as 

fundamental equations are essentially fundamental under certain special cases, but these 

are generic enough that the solutions of these is still interesting and there is also further 

mathematical treatment and extra equations that we can derive for all these things, all 

these physical phenomena and in all the cases the resulting equations can be solved using 

the techniques that we are going to discuss in the rest of the theory. 

So, we would like to look at how to solve this simplified form of the special form of the 

equations that we have derived, which is the Navier-Stokes equations for a Newtonian 

single phase fluid and then. So, that armed with that we can then solve the extra 

equations that come into picture, when we are dealing with all the more complicated 

physical phenomena. 

The objective of this lecture, this part of the module is to formulate the problem or the 

mathematical problem for especially derive the fundamental equations that we are going 

to solve for the, rest of the course and these fundamental equations are applicable for 

single phase laminar flow often Newtonian fluid. In the last part of this last module of 

this course, we look at the equations that can be used for turbulent flow, but otherwise 

we are assuming laminar flow and these equations are in a special form, these equations 

are in the form of coupled non-linear partial differential equations and these equations 

are 4 in number for the simplest case and involve four variables u, v, w, p in the case of 

Cartesian coordinate system and they require us to specify the density and viscosity and 

the two coefficient of viscosity for the general case. 



So, with these things we can go into solutions of the equations, but before we do that we 

would like to bring in the considerations about the boundary conditions and initial 

conditions because we have these are partial differential equations. So, the mathematical 

problem is not complete without specification of the boundary and initial conditions and 

we would also like to look at a allied phenomenon which go along with the fluid flow 

and the allied phenomenon are the heat transfer the mass transfer and the chemical 

reactions that are usually of interest to practicing engineers. 

It maybe if you looking at a flow over a car then the equations that we have derived are 

sufficient for very low velocities, but for high velocities, we have turbulence and 

turbulent flow equations are extra things, but if you are looking at flow of inside a car 

and if you are looking at how the air conditioner works and all that, then you are 

bringing it in mass transfer, you need to be able to solve those kind of things. If you 

looking at what is happening inside the piston and how the fuel that you are putting into 

that is combusting and then producing power which is generating power to drive the 

wheels and then all that kinds of things, then you have to consider also the chemical 

reactions. 

So, we are going to look at the mathematical formulation for flows with heat transfer, 

with mass transfer and with chemical reactions just the very framework of this. So, that 

we have the basic ideas that are coming in. And then we will briefly look at the boundary 

conditions, and what you mean by a well posed mathematical problem, where we have a 

set of equations, enough number of equations for the number of variables that are coming 

and the appropriate initial boundary conditions which will give us a unique solutions. 

So, those are the things that we going to discuss in the second week of the second 

module dealing with governing equations. 


