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Errors and Approximations – Errors in Numerical Methods

Hello  and  welcome  to  this  week  to  of  MATLAB  programming  for  numerical  computation

course.  In this module we are going to cover errors and approximations. This is lecture 2.1 and

in this lecture we are going to look at where do errors originate in numerical methods. One of the

things that happen always, when we talk about numerical methods.

When you use computers for using numerical techniques, you will always encounter errors of

various  forms.  And  these  errors  are  going  to  have  2  basic  origins.  1  is  what  is  known as

truncation errors and the other is known as the round of errors.  Where do this error come from?

And how to they affect the overall numerical methods is, something that we will introduce to

ourselves in this particular lecture.

(Refer Slide Time 01:06)

Ok so, let us look at the first term type of an error that is called the truncation error. And what are

listed over here is, the Maclaurin series for calculating e to the power x. The Maclaurin series of



e to the power x up to nth order term is return as 1 e to the power a. I am sorry, is return as 1 + a

+ a2 / 2! + a3 / 3! and so on.

So what we are going to do is, we are going to compute e to the power 0.1 using multiple number

of terms in this Maclaurin series. And we will compare it with the actual value. The error we

have, we will define as the difference between the true value and the approximate value. We do

not care whether this difference is positive or negative. The error is therefore just the absolute

value of the difference.

So it does not matter whether the approximate value is greater than or lesser than the true value

as long as it is different than the true value. We want to capture how much that difference is and

that is how we define the absolute error epsilon (02:08) okay.

And what we will show using MATLAB is, that if we introduce more number of terms in this

Maclaurin series, we are going to get lower error okay. So let us head on over to MATLAB in

order to compute this using the Maclaurin series approximation.

(Video Starts: 02:23) So, let us open script file. Let us call it maclaurinExp okay. We will create

the file Maclaurin series for exp of 0.1 okay. So let us look at Maclaurin series with different

number of terms. So let us say we want to look at terms up to n = 5. So we will say n = 5, our

value of a was 0.1 okay and the result that is called as expVal = 1.0 why 1.0 is, the first term over

here is 1. (Video Ends: 03:13)

The first order term that is a to the power 1 term is a, a to the power 2 term is a square divided by

2 factorial so on and so forth. So if you look at the first term and compare it with the second

term, it is the first term is just multiplied by a/2. If you compare these 2 terms, is just multiplied

by a/3 so on and so forth.

(Video Starts: 03:40) So that is what we are going to do. We will call currentTerm as 1.0 and we

will use a for loop for i = 1 to n okay. And currentTerm = currentTerm multiplied by a/i okay. So

let us see how exactly this works. (Video Ends: 04:06)



So we have e to the power a, that we need to compute approximately. When i is going to be equal

to 1, at that time our value of currentTerm is going to be 1 multiplied by a/1. That is a, in the next

loop it is going to be a multiplied by a /2. That is a square by 2 factorial. The next term will be a

multiplied by a2 / 2 multiplied by a / 3 that would be a3 / 3!, so on and so forth okay.

(Video Starts: 04:41) And our expVal = expVal + currentTerm, okay. And I will end this loop

over here. So that is going to be the value of expVal. Let us say trueVal = exp (0.1) and error =

abs (trueVal – expVal) okay. So we save this and will run. Let us go to MATLAB and run it and

we get this result. So, we actually see that the error is 1.4 multiplied by e to the power 10 minus

9. That is the error expVal is 1.1052 and trueVal is also 1.1052 because the error is of the order of

n ^ - 9 okay.

Now what let us do is, let us change the particular code. So, that we store all the various values

of expVal. So let us say expVal(i)  = expVal(i  – 1). Let us put it in this way expVal(i  +1) =

expVal(i  +  currentTerm).  So,  what  does  the  first  expVal  contain?  It  is  it  is  the  0  ordered

approximation (Video Ends: 06:34).

That is just 1. So, that is not really an approximation, expVal 2 is going to have 1 + a, expVal 3 is

going to have 1 + a + a square by 2 factorial so on and so forth. When we calculate this error,

trueVal is a scalar and expVal is a vector so, we can subtract a scalar from a vector or a vector

from a scalar. And we will get a result in vector so this should not be any problem for us. The

error will actually end of the 6 dimensional vector, a 1 /6 vector okay. 

(Video Starts: 07:06) So let us go and clear okay. And let us now run Maclaurin exp okay.  So

now we have the error and as you can see the error is 10 ^ -3, 10 ^ -4 and as we go to higher

order terms the error keeps decreasing quite significantly.

So what  we see over  here is,  that  as we introducing more and more terms, our error keeps

decreasing quite significantly okay. Let us look at error 4 which is basically when n = 3, our error

is 10 ^ -6. When n = 4 our error is going to be 10 ^ -8.  And we have seen already that when we



introduce all 5 terms of the Maclaurin series, our error drops even further okay. (Video Ends:

08:04)

So this is how we have computed, the e to the power a, approximation using Maclaurin series. So

what we have seen over here is that as we truncate the overall  series to nth order terms we

realized that the error keeps on decreasing. So more the number of terms of Maclaurin series we

introduce, the smaller is going to be the error okay. Why does the error keep changing or why the

error in the first place? 

The reason why there is an error in the first place is, because we are truncating this Maclaurin

series. So this series is being truncated at the first term or the second term or the third term and

so on and so forth. If we truncated just the first order term, we are going to get a greater amount

of error. The error was of the order of 10 ^ -3. When we truncated it to second ordered term, we

got error of 10 ^ -4. 

When we truncated it to the third ordered term, we got the error of the order of 10 ^ -6 so on and

so forth. So what we saw over here is that once we introduce greater number of terms, we are

going to reduce the error. This is going to be something that we are going to see consistently in

this particular course. So if I can summarize these results. What these results are?  When you

have an infinite  series the greater  number of terms that  you retain in the infinite  series,  the

greater is the accuracy or conversely smaller is the error okay. 

In the next lecture we will expand this particular idea to Taylor’s series expansion. Taylor’s series

expansion  is  indeed  where  we  get  this  Maclaurin  series  from.  So  that  particular  idea  of

introducing more number of terms in order to reduce the overall truncation error is going to be a

common motive that we are going to follow in the rest of this particular lecture series. Ok so this

was the first type of an error which is the truncation error. 

(Refer Slide Time: 10:06)



The second type of an error turns out because of what is known as machine precision. We like to

think of a computer as having what is known as an infinite precision. However that is not really

true. The machine, the computer also has a machine precision which in some way is like a least

count. So let us consider a ruler that I have shown over here. The least count of this ruler is 1

millimeter or 0.1 centimeter. 

So that is kind of the minimum resolution of that ruler. You cannot measure length that is less

than 1 millimeter. Ok if you want to measure, then with the precision greater than 1 millimeter or

a precision value of sub millimeter. 

(Refer Slide Time: 10:52)



We can for example, use a vernier caliper. This particular example of vernier calipers has the

least count of 0.01centimeter, so we can say that this vernier calipers has a better precision than a

ruler okay. So precision is basically a term which we can approximately, we can use it in view of

the term least count okay. So it is kind of like least count. Now in the same manner in which

these 2 devices have a least count our computer is also has a least count. 

(Refer Slide Time: 11:27) 

Just  like  this  devices  the  real  numbers  in  a  computer  representation  have  a  least  count.  So

between a number a, and a+epsilon, that does not exist any number and that is what the machine

precision is about.  It is about the least count of that particular computer okay and that least count

is dependent on the number of bytes that we used in order to store a real number. So for example,

a standard real number is, uses 4 bytes which is basically 32 bits so that particular real number

has a certain precision. A double precision real number which uses 8 bytes or 64 bits has a better

machine precision okay.

(Refer Slide Time: 12:16)



And that  representation  is  based on what  is  known as the floating  point  representation  of a

number for more information on this. You can go to the computational techniques course the link

for which is given over here and look at the machine precision and floating point representation.

So let us look at floating point representation of a decimal number. Let us say we have 5 boxes in

order to store a number and 1 box in order to store an exponent.

The number is always going to be represented as 0 point x x x x x multiplied by 10 ^ n okay. So

this is where you we put in those 5 digits of our decimal number so let us see.

(Refer Slide Time: 13:02)



How we represent a number of 23.217. The number 23.217 becomes 0.23217 * 10 to the power

2. So what is the next number? That comes in the next number is when the lowest digit over here

is  incremented.  So that  becomes the next  number becomes  23218 * 10 ^ 2 that  is  the  next

number okay. So what if we had a number of the form. 

23.2172, the problem is  the number 23.2172 cannot  be represented with 5 digits  of what is

known as  mantissa  and 1 digit  exponent.  The reason is  that  number  will  be  represented  as

0.23217 multiplied by 10 ^ 2. There is no space to store this trailing digit. As a result this number

and this particular number have the exact same representation. 

The reason why we are not able to represent a number with a 6 significant digit is, because we do

not have enough precision in our decimal machine okay. So the least count of this particular

decimal machine turns out to be 10 ^ -5 multiplied by the absolute value of x. So that is the 10 ^

-5 is what is known as the machine precision.  

(Video Starts: 14:32) In case of MATLAB, the machine precision is given by a keyword eps and

the machine precision in MATLAB is 2 multiplied by 10 ^ -16 okay. This machine precision is 2

^ -52. (Video Ends: 14:54). The reason is because just the way we had 5 digit representation of

this mantissa in this decimal number. Likewise the double precision real number that MATLAB

uses which is the IBM standard uses a 52 bit mantissa. So the mantissa has 52 bits in it. So the

precision is 2 ^ -52.

Note over here that the precision was 10 ^ -5 okay. So let us look at the case where we have

(Video Starts: 15:25) let us call a = 1+ 2 ^ - 52. That is the value of our a and if you subtract a -

1, we are going to extract this particular value okay. So what is happening over here is when we

use the value of this precision, that particular number a 1 + 2 * 10 ^ -6 is indeed represented as

1.00015 times followed by a2. 

However what if we write a = 1-2 ^ -53, this number is going to be indistinguishable from 1. If

we say y a – 1, we are going to get a result of 0 okay. So what does this mean is, this means that



our MATLAB has a least count of 2 ^ -16. And that is what is known as the machine precision

okay. (Video Ends: 16:25)

So with this, we come to the end of this particular lecture. In this lecture we covered 2 important

concepts. The 2 concepts that we covered in this lecture were is that the truncation error because

we are going to truncate an infinite series to a finite number of terms. There is going to be an

inherent error that is associated with that truncation, the second thing that we realized was that

there is a machine precision.

We cannot represent any real number in any form that we want there is going to be a least count

with respect to representing those real numbers.  So,  what does this  imply when it  comes to

numerical techniques, something we are going to cover in the next lecture. Thank you and see in

the next lecture.


