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Hello and welcome to MATLAB programming for numerical  computations.  We are in week

number  7  in  module  7  we  are  going  to  cover  ordinary  differential  equations  initial  value

problem  .In  this  module  we  are  going  to  tackle  methods  for  solving  ordinary  differential

equations.  Lecture 7.1 we are going to go over introducing ourselves to ODE and take up 1

example and solve it using Euler’s method. Euler’s method is one of the simplest methods for

solving ODES. 

(Refer Slide Time: 00:48)

So let us let us look into the ODE problem. So introduction, what is an ODE. ODE is when we

want to solve an equation of the form dy/dt =f (t, y) subject to initial conditions, y at some time

t=0 is given us y0. We start with that initial condition and march forward in time at each time

finding the value of y at that corresponding time instant. In this way we will get the overall curve

y as a function of t which i have plotted over here. 



Now the function f (t, y) is nothing but the slope of this y versus t curve at any point in the

domain okay. So if we are going to start with a y0 t0 we will then march on and find y1 t1 y2 t2

y3 t3 so on and so forth is what we are going to actually find. Eventually we will develop the

entire curve y as a function of t. And that is the actual solution that we are intending to find using

a numerical scheme. 

The discussion and theory for numerical methods for solving ODE-IVP initial value problems is

discussed in computational techniques course module 7 the link for which is given over here. In

this lecture or for that matter in this course we are not going to cover any theory or discussions

with  regarding  ODE-IVP. Rather  we  will  use  MATLAB in  order  to  solve  the  initial  value

problems.  Let  us  get  started with 1 of  the simplest  methods which is  known as  the Euler’s

method. Before we go on to Euler’s methods ah method let us look at how we would want to

solve this ODE.

(Refer Slide Time: 02:44)

We can write dy/dt in a finite difference form (y i+1 - y i) / h where h is known as the step size

okay. If we remove the limit h tends to 0 and take it as a very small value, we can rewrite this

equation in the form y i+1 = y i + h * F (t, y). Now if the function f is calculated at yi and ti we

get what is known as Euler’s forward difference or sorry. Then we get what is known as Euler’s

explicit method. 



In general numerical methods for ODE-IVP we try to find certain slope Si which is the best

estimate that can be used in order to march forward along this  curve.  So, Si is  going to be

dependent on y, y’s and t’s and we are going to find that particular Si such that we get y i+1 as

close as possible to the true solution. 

(Refer Slide Time: 03:59)

In the simplest case us we can consider Si as nothing but f calculated at T(i),yi and that is what

Euler’s explicit method is. y i+1 = y i + h* f (ti, yi) is the formula that we will use for Euler’s

explicit method. At the initial time we have y0 t0 we can use this in order to compute now y0 is

known, t0 is known and y0 is known therefore f at t0 y0 is known. We can use this to compute

y1. Once y1 is known and t1 is known we can use them to compute y2.

That we can use to compute y3 so on and so forth okay. So this becomes very simple straight

forward method in order to solve ODE initial value problems. The problems with Euler’s explicit

method are 2.The first problem is that the method is not very accurate to tackle this problem. We

are going to talk about Runge- Kutta method in lecture 7.2 and thereafter, the second problem is

regarding the step size that we need to choose in order to get the system to be to be stable.

Stability of numerical methods something that I will introduce in this lecture but that this beyond

the scope of this course. I will introduce the concepts of stability and so on, mainly for the sake

of completeness although it is not strictly a part of this MATLAB course okay.



(Refer Slide Time: 05:33)

So the example that we will solve is dy/dt  = -2ty with the initial condition y0 = 1.If we solve this

analytically the solution we are going to get y at anytime t is going to be equal to e exponential

of -t square. What we want to do is use Euler’s explicit method and compare the solution using

Euler’s explicit method to the analytical solution that we have written down over here. Let us go

on to MATLAB to solve this problem using Euler’s explicit method okay. 

(Video Starts: 06:09) Let us create a file called Euler’s explicit, solve ODE-IVP. So we have put

down some parameters t0, y0 was what was given to us let us say that we want to solve it until

time tEnd =5. And let us say the step size that we are going to be use is 0.1. So put this down ah

all of this over here, initializing, okay. I have put a transpose over here because we want our t

and y to be column vectors. 

y is the solution vector and that we will initialize as zeros of size (N+1). And y1 which is the first

value is equal to y0. Keep in mind you would have realized by now that MATLAB does not have

array location 0. The array start with index 1 and therefore we will use the index 1 for time T = 0

okay. In addition to this we also need to specify the value of n. So n is going to be nothing but

tEnd- t0, t0 / h okay. 



Let us save and run this to see that we do not get any errors okay. So we are not getting any

errors over here let us now continue solving using Euler’s explicit method for okay. fi is going to

be nothing but -2*T(i)*y(i) . That is our fi and Y (i+ 1) is y (i) + h*fi. So that is our Euler’s

explicit method. So let us go and look at us Y (i+1) is y (i) + h*f (ti, yi) okay. Our f was- 2ty. So f

at time i, is going to be nothing but -2 multiplied by the vector t, ith location multiplied by vector

y, the ith location okay. 

That is going to be our fi.  Y (i+ 1) is nothing but y (i) + h* fi okay and end, this should do. So

that completes our Euler’s explicit method. Let us plot this, plot (T, Y).  So let us hope that this

runs without an error run. And this is the numerical solution using Euler’s explicit method. Let us

also compute the errors. So plot results and obtain errors yTrue = exp (- T square) correct yeah.

exp of(-T .^ 2). We need dot because this element by element squaring and err = abs, absolute

value (yTrue- y) okay. 

So that is what we have, let us clear our screen and that is called Euler’s explicit here, solves this

and let us look at error err let us call max, max value of err and the max (ERR) is 0.035. If h was

reduced to 0.01 let us run this okay. And see max (ERR) okay and the maximum error went from

0.03 to 0.003. So by reducing h by 1 order of magnitude the maximum error also reduced by 1

out of magnitude. 

Let us save this by reducing h further and we find max (ERR) and the max (ERR) fell by another

order of magnitude. We now instead of 3*10 ^ -3, we now have 3*10 ^ -4. So from here you

would have probably guessed start the order of accuracy for the global truncation error rather for

Euler’s explicit method is the order of h ^ 1. This is something that will cover in a little bit more

details in 1 of the later lectures in this module okay. (Video Ends: 12:42)

Okay so let us go back, change our h to our old value and let us go back to our problem okay. So

this  was the example  that  we solved using Euler’s explicit  method.  Now in Euler’s explicit

method our f we calculated at (ti, yi). We could have very well calculated f at T (i+1), Y (i+1)

instead of (ti, yi). If we were to do that we will get what is known as Euler’s implicit method. 



(Refer Slide Time: 13:03)

In the explicit method ti and Y (i) were already known and you could directly calculate this and

assign it to Y (i + 1). However that is not possible in Euler’s implicit method because our y(i)

itself  depends on y sorry, our Y (i+1) depends on itself  through this  function f.  So this  is a

nonlinear equation which we need to solve. We can do it by using a nonlinear solver such as

fsolve. fsolve is something that we covered in module 5 of this course. 

So if we were to rewrite this we will rewrite this as Y (i + 1) - h * F at (T (i+ 1), Y (i+ 1)) – y (i)

= 0. And this we can assign it to fsolve and we can solve okay. Now Euler’s implicit method is

not a part of this particular course. (Video Starts: 14:05) However for the sake of completeness I

have already created Euler’s implicit  code and I will display that clear all,  close all,  clc edit

Euler’s implicit okay. 

This is the code that I have created earlier for same values of y0, t0, t and h everything else is

remaining same, now our f is calculated at T (i+ 1), Y (i + 1). So first I will calculate T (i+ 1)

okay. Y (i + 1) is yet unknown and therefore we need to use fsolve in order to solve this okay. So

Y (i + 1) is the unknown quantity so this is unknown this over here is unknown. So we have used

what is known as anonymous functions in MATLAB in order to give this particular f of x. (Video

Ends: 14:58) 



So that f is nothing but y - h * (- 2 * t * y) - Y (i). So this is what was written over here okay.

(Video Starts: 15:14) And the initial  guess that we are going to give is capital  Y (i) okay an

anonymous function is another thing that we have not covered in this in this course. We are not

going to cover anonymous function in MATLAB in this particular course so these are 2 concepts

which are actually beyond the syllabus if you will okay. 

I have just shown it for the sake of completeness, so that you can understand how we can do this.

Let us also plot and obtain errors as before. Plot (T, Y), ERR = abs (yTrue- y). We also need

yTrue. yTrue is exp (-T .^)and there is a cap dot cap sorry, instead of cap okay. This is basically

what we have done for Euler’s implicit. Let us run this and hope that we will not get any error

okay. 

One thing you will notice is that Euler’s implicit method takes a little bit longer than Euler’s

explicit method in order to run that is because we need to solve fsolve at each line okay. And the

figure looks approximately similar what we had in Euler’s explicit method. Let us go and find

out the max (ERR). Max (ERR) is again of the order of 0.01. If you recall in Euler’s explicit

method also with h=0.1. The error we got was 0.03 okay.

So the order of accuracy of Euler’s implicit method is similar to that of Euler’s explicit. (Video

Ends: 17:06) So now the question is, if the order of accuracy is similar between Euler’s implicit

and explicit and implicit method is much more difficult to solve than Euler’s explicit method,

why are we interested in implicit methods in the first case. The reason why implicit methods are

very useful is because implicit methods are globally stable okay. 

This was covered in the computational techniques course module 7.5 link for which is given over

here. Basically what that means is, if we start increasing the step size, we will need to sometimes

increase step size in order to speed up the overall computation. If we start increasing the step size

there will come threshold value of h beyond which Euler’s method explicit method will become

unstable. This means that you will not get a stable solution. 

Euler’s implicit method on the other hand is globally stable which means you can choose any

value of h of your liking. And Euler’s implicit method will remain stable. The stability is the



reason why implicit  methods  are  popular  especially  for  solving  tough ODE problems  okay.

(Video Starts: 18:17) Let us kind of let us now show what loss of stability means. 

Okay, we will just clear this and we will go back to Euler’s explicit method. So now if h instead

of 0.1 let us say if we were to take 0.25. And we run this okay. We get the solution. Now the

solution qualitatively looks similar to that we saw earlier. Only thing is it looks more bumpy and

that  is  because the errors  are  higher  with step size of 0.25.  While  the errors  are  higher  the

solution is still stable. 

Now let us increase this to 0.5. Let us run Euler’s explicit. And we see that is something funny

that is happening. There is nothing that happened in the first 2 steps rather. In the third step the

solution directly went from 1.0 to 0.0 okay. And that is the reason why that happens is h=0.5 is at

a border of the stability. If we increase our h beyond 0.5, we will make the overall  solution

unstable. 

So let us go and increase this to h=1 and we will see what instability. Let us run this okay as you

can see the value of T(i) sorry, value of Y (i)  at t=5 is greater than 100. And this particular series

solution  is  diverging  okay. The  reason  is  because  Euler’s explicit  method  in  this  particular

example has a limit of stability at h=0.5. Any value of h > 0.5 will result in unstable solution. 

Let us actually go and change h to 2.5 and see what happens okay. And our solution has gone to-

12 and if again same thing if we were to change 5 we will see a similar behavior. Let us changes

to 10 see what the behavior is okay. And you see we have gone that the solution has reached

something like -1 * 10 ^ 4. So we have very clearly gone this taken the solution to an unstable

range. Let us compare that with Euler’s implicit. 

We will use h=2.5 and tEnd = 10. Keep things the same as before tEnd=10, h=2.5. Let us save

this okay. And let us run this and see okay. Although this solution is very approximate, we do not

have a very good approximation using ODE using the ODE solver Euler’s method. We still have

the solution to be stable. The reason is that Euler’s implicit method is globally stable. (Video

Ends: 21:36) 



So we can choose the size, the step size h as large as we want. And the solution will still remain

stay okay. So with that I will come to the end of lecture 7.1. What we covered in lecture 7.1 is

introduce ourselves to ODE initial value problems, took up 1 example and solve it using Euler’s

method. Euler’s method was the simplest method that we could choose. 

And we compare Euler’s implicit and Euler’s explicit.  In the rest of this module we are going to

work with more accurate explicit methods known as the Runge- Kutta family of this in the next

lecture.  I am going to introduce the second order Runge-Kutta method. So that is our plan for

remainder of this module. See you in the next lecture. Thank you.


