
MATLAB Programming for Numerical Computation
Dr Niket Kaisare

Department of Chemical Engineering
Indian Institute of Technology, Madras

Module No. #05
Lecture No. #5.5

Non-Linear Algebraic Equations - Using MATLAB function fsolve

Hello and welcome to this course on MATLAB programming for numerical computations. We

are in module 5, covering methods to solve nonlinear algebraic equations. In this lecture, that is

lecture  5.5.  I  am  primarily  going  to  cover,  how  we  can  use  a  MATLAB  function  fsolve.

Previously, we have used another MATLAB function fzero. fzero was able to solve an equation,

in a single variable. fsolve, on the other hand, is capable of solving, multiple nonlinear algebraic

equations simultaneously.

(Refer Slide Time: 00:49)

Before we move on to the contents of today’s lecture, let us just recap what we have done so far

in module 5. What we have done is, if we have taken an example of f(x) = 2-x+ln (x) = 0 and

solved this single variable equation, to obtain the value of x, that gives the solution. In the first

lecture, we covered a method known as bisection method, we wrote our own code in order to

solve this equation and find a solution. 



In the second lecture, we showed how we can use the MATLAB function fzero. In the next 2

lectures, we covered Fixed Point Iteration and Newton Raphson method. Both of these, can be

extended to multiple  variables.  However, in lecture 3 and lecture 4, we covered Fixed Point

iteration and Newton Raphson method for the same example 2-x+ln(x). We used this example to

also demonstrate, some of the properties of the numerical methods that we have covered in the 4

lectures. 

What comes next, is the following; in this lecture,  we are going to look at,  how we can use

MATLAB function fsolve. First, we are going to use fsolve, to solve the same equation 2-x+ln(x)

= 0. In the next lecture, we are going to look at multivariate Newton Raphson method to solve

an, n equations and n unknowns. 

So, let us gets started with a content of today’s lecture where, we are going to use the MATLAB

function fsolve to solve the single equation, in single variable 2-x+ln(x) and then we are going to

extend it, to multiple variable example okay. 

(Refer Slide Time: 02:36)

So how to use the function fsolve? The syntax of function fsolve is very similar to the function

fzero. So, in this case, our variable x is going to be a vector okay. As we have discussed earlier x

is going to be a column vector. So it has n rows and a single column. So, it is an n/1 vector. The

solution is going to be, xSol okay. And that  is  also going to be n/1 vector and the function



funName is the function file that will calculate a vector valued function f as the function of the

vector x. 

Again, because we are interested in solving n equations in n unknowns, f is going to return or the

function fun Name is going to return n values and it will be returned as a column vector okay.

And we need to provide initial guess, and the initial guess has to be of the same dimension as

number of variables. Unlike fzero, we do not have to provide initial  guesses that bracket the

solution. We only have to provide, the initial guess, that we feel is the best guess, for the solution

that we are expecting okay. 

(Refer Slide Time: 03:59)

So, let us look at an example, we will use, fsolve in order to solve the nonlinear equation 2-

x+ln(x) = 0. (Video Starts: 04:11) Let me go to MATLAB and so let us look at the function that

we have already created. We had already created the function called fun4bisec okay. Where, the

function value, it  calculated the function value, 2-x+ln(x) okay. And that is what we want to

solve so. (Video Ends: 04:39) 

As I had said here, our funName is a function that calculates f(x) okay. fsolve is the MATLAB

function that we will solve f(x) = 0. It needs, somehow a function that calculates for it the value

f(x) okay. (Video Starts: 05:02) And that is what we are going to provide over here. And we are



not going to modify that function at all okay. And we are just going to use the syntax, as shown

over here.

f xSol=or the solution or the = fsolve okay @ x that is the variable, that we want to solve for,

name of function 4bisec (x) fsolve @ x space fun4bisec in brackets x. That is how we call this

particular function and pass it onto fsolve and we need an initial guess, so let us say the initial

guess in this case, let us take the initial guess as 1 okay. And let us just press enter. 

When we give an initial guess as x= 1 okay, we land into a problem. (Video Ends: 06:00). The

reason why, we get this problem is, let us look at this particular function. Now this function has a

maxima at x = 1. So, for example, if you differentiate this, as we had seen in the earlier lecture,

we get this as -1+1 by x okay. - 1+1 by x at x = 1 is going to be equal to 0.

Which means that particular guy is either going to be a maxima or a minima okay. So, if now, if

we take, d square we are going to get-1 by x square which is a negative value with at x=1 which

means that it is a maxima. So, this function, as we had seen earlier, goes through maxima at

value of 1 okay. (Video Starts: 06:55) So, unlike fzero, where we needed to give solutions, that

give an initial guess, that brackets the solution here, we need to provide a reasonable value of the

initial guess.

The problem with providing the value of initial guess is equal to 1 is that the method such as

Newton Raphson or fsolve, cannot proceed because the slow calculated at x=1 is equal to 0 okay.

So that is one of the problems, that both fsolve as well as Newton Raphson method faces. You

cannot solve, with start, with an initial guess that is a local minima or a local maxima. What we

are going to see next is if we start with an initial guess which is to the left of that maximum we

are going to reach the first solution, if we start with an initial guess to the right of the maxima,

we are going to reach the second solution okay.

So let us take an initial guess to the left and that initial guess for example is 0.5 okay. And let us

solve this. When we solve this, we get the result of MATLAB tells, that the equation is solved

and the solution  xSol  = 0.1586.  Recall,  that  that  was the  solution,  the left  solution  that  we

obtained in the previous lecture okay. Now let us take an initial guess of x=2 and let us see what

happens. When we take an initial guess of x=2, the xSol ends up becoming 3.1462. So we get

now to the second solution.



Finally, a third set of initial guesses, are going to be to the right of the second solution. So, let us

take that value as 5 and see whether the fsol converges or not. When we take the method 5, again

sorry, we take the initial guess as 5 again, we get the result that the equation is solved and the

solution reached is the second solution 3 .1462 okay. So, with that we come to the end of the first

example, which was a single variable example okay. (Video Ends: 09:07)

The single variable example, with that we used in fsolve. We saw that, we were able to use the

exact same subroutine or sorry, the exact same function, as we use in f0 in order to return f(x).

Once, that particular function was passed onto fsolve,  fsolve was able to solve the nonlinear

algebraic  equation,  for  most  of  the  initial  guesses,  but  it  was  not  always  able  to  solve  that

equation okay. One of the cases, when it is unable to solve this equation is, if we start at or if we

start close to a local minima or a local maxima as we saw, when we started with x0 = 1 okay. 
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Next, we are going to cover multivariable examples okay. And the example that I am going to

cover is a 3-dimensional system. So, we have our solution variable x in the f(x). Our x is going to

be a 3-dimensional variable and f is going to be a 3-dimensional vector valued function. For this,

we are going, to take an example of, what is known as the Lorenz system.

The  Lorenz  system,  was  a  first  example  that  demonstrated  chaos  and  it  is  an  extremely

interesting example, for people to learn and if you want to look at or try to get some idea about



what Lorenz equation is, you can go to this Wikipedia article over here. And it has a pretty nice

description of Lorenz equation is? You can go to this Wikipedia article over here, we are going to

get these equations, x – y = 0; 2x – xz – y = 0; xy – 3z = 0. So, let’s go and try to solve this using

MATLAB. 

(Refer Slide Time: 10:46)

LorenzSystem okay. I will create a new file function fval= lorenzSystem X okay. 

So, we have used, capital X as the inlet input variable over here. Let us define our, define three

variables x=x1, y=x2, z=x3, define f(x) okay. So fval (1, 1) equal to, fval (2, 1) equal to, fval (3 ,

1) equal to again. We had said multiple times earlier, that we are interested in ensuring that, fval

is going to be a column vector. That means n number of rows and a single column okay. So we

have x-y as the first equation. 2x-xz-y, 2 * x - x * z, -y that is the second f and third is xy-3z is at

x * y, -3 * z, okay. Let us save this okay. And let us go to our command prompt okay.

So, now we need an initial guess. So, let us take the initial guess as, 1, 1, 1 okay. And we will use

xsol = fsolve @ let us say x lorenzSystem x, x not that is the initial guess, and that should give us

the solution in xsol. I will press enter, equation is solved okay. And the solution is 1.7321, 1.7321

and 1. If you take these equations and try to solve these, you will find that Lorenz equation or



Lorenz system has 3 solutions. 1 solution is root 3, root 3 1, another solution is-root 3-root 31

and the third solution is 000 or the origin okay.

So, let us try, to get the other solution also. x0 instead of saying is 111. Let us say x0 was -1, -1, 1

and let us now try to find xsol. And when we do that, we get the other solution -root 3, -root 3,

1.0 okay. So let us try another initial guess. And in this case, let us say, the initial guess was say

-1-1 0. Let us try with that okay. And xsol. When we try okay, we get the solution, which is

approximately equal to 0. 

Keep in mind, that we are not getting the solution exactly 0. Why because, we have a stopping

criteria, and the stopping criteria in fsol is, that the tolerance value for x is 10 ^ -6 okay. And that

you can, let us say help fsolve okay. 

There is a command called optimoptions. And optimoptions is the command that you can use, in

order to change the optimization properties, in which case you will need to give the command for

solving fsolve as shown over here. Where option comes from the vector, options come from, this

optimoptions okay. 

So, let us look at optimoptions. Let us say fsolve okay. When we type this okay, we get, what are

the default options that fsolve uses. The default option is, that the function tolerance. That we

specify in order to say f(x) = 0 is 10 ^ -6. The tolerance on x that is our solution variable is also

10 ^ -6. 

So as long as our solution, defers from the true solution, by less than 10 ^ -6, our method is going

to converge, going to be set to have converge. In this case, the true solution was 0 okay. And

when the solution, was give comes out to be 10 ^ -7 multiplied by .3, .3, .5. That means, we are

closer to 0, than the variable tolerance tolx value okay. (Video Ends: 17:45)

So, with that we come to the end of this lecture. What we covered in this lecture were 2 things,

single variable fsolve and a multivariable fsolve. We took the example of Lorenz equations, for

the multivariable fsolve okay. With that I come to the end of this lecture, and I will see you in the

next lecture. Thank you.


