MATLAB Programming for Numerical Computation
Dr.Niket Kaisare
Department of Chemical Engineering
Indian Institute of Technology, Madras

Module No. #05
Lecture No. #5.2
Non Linear Algebraic Equations — Using MATLAB function fzero
Hello and welcome to MATLAB programming for numerical computations. We are in week
number 5 lecture 5.2. In this week we are covering solving nonlinear algebraic equations and in
today’s lecture we are going to focus on using MATLAB function fzero. The MATLAB function

fzero is a method to solve a linear, a single nonlinear equation in a single unknown.

In the previous lecture we have seen the bisection method which was a method to compute the
solution to f(x) = 0, given 2 initial guesses. The 2 initial guesses lie on either side of the solution.
fzero is a MATLAB program that uses a techniques. Similar to bisection rule it uses bisection

and a couple of other techniques depending on the problem statement.

So we are going to do 2 things in today’s lecture, first see how to use the function fzero, second
we are going to modify the bisection rule that we made the program in the previous lecture in
order to do and understand bisection rule and understand numerical equation solving in a better
way okay.

(Refer Slide Time: 01:22)



MATLAB Function fzero :Q\

Solves nonlinear algebraic equation in single variable
Uses bracketing method

Usage:

x50l = fzero(@(x) funName (x),x0)

x50l is the resulting solution
funName is a function file that we provide to calculate f(x)

x0=[xL;xH]; s vector of initial guesses

So let us look at the MATLAB function fzero. We are going to use fzero in order to solve the
same equation. That we did in the previous lecture that equation was 2-x+In(x) okay. Now if we
are going to do help fzero, we will find out how to use fzero. Some of the most important things I

have listed over here.

The usage of fzero is going to be as follows. The solution xSol that is the output from fzero =
fzero followed by the name of the function in the x variable followed by the initial guesses xSol
is the resulting solution, funName is the name of the function that returns the value of f(x) given

the variable x okay.

There are different ways in MATLAB in order to pass on the name of the function to a calling
function. We are going to use basically this @ func @ representation using what is known as

anonymized functions representation okay.

So this is the method that we are going to use. as seen over here the method is as shown is @
followed by in brackets the name of the variables that you need to solve for, followed by a space,
followed by the name of the function in which you will use to get the value f(x) = 0 that you
want to solve so funName is going to return f(x) given the function given the values of variable

X.



Now funName itself can have other parameter as well in which case we will have the other
parameter listed over here. This x and this x should be the same okay. That is the variable that
fzero is going to solve for. When we use this MATLAB function fzero okay. There are various, as
I said there are other ways of using functions as well and the most common way is to use @

funName.

We are not going to use that particular method for because that is somewhat of an older method
and this method of using functions. Although a little less simpler in the beginning is actually a
very powerful method okay. So let us go on in MATLAB and use function fzero in order to solve
f(x) equal to 0.

(Video Starts: 03:53) So edit, let us say fun4Bisec okay. So we are going to use the function and
the name of the function I am just going to call it fun4Bisec okay. So function fval =
fun4Bisec(x). That is the name of our function okay. Keep in mind the name of the function that

we have right over here should be the same this name has to be the same as the name of the file.

The file name is what the, what MATLAB recognizes the function as, so as far as we are
concerned the name of the function that we write over here and the name of the file always needs
to be the same okay. And the function that we have our f(x) is nothing but fval = 2-x+log (x) and
end. End is optional so as a good programming practice we are going to include the end also over

here okay.

So now let us say what the fun4Bisec is going to be for x=1, so f(x) = 1, so we will say x = 1 and
f is just 2-x+log (x) okay. And for x = 1, 2-x+log (x) that value is also equal to 1 let us call that
function fun4Bisec using x and that should return the value of 1 okay. Let us say we were to
recall it using 2. That should return f (2). If we call it using 3, it will return f(3). If we call it

using 4, it will return f of 4 okay.

If you recall from the previous lecture, we had given our initial guesses our xI we had given as =
1. Our xu we had given equal to 4. The reason why we had done that was xI for @ x1 f(1) was

equal to 1 @ xu f(4) was equal to -0.6137 which are of opposite signs if you recall in bisection



method, we needed to give xl and xu of opposite signs and thats what is we need to do in fzero as

well.

So now that we have created that function okay. We are going to say xSol = fzero okay. @x okay.
x is the variable that we want to solve for, so @ x spacebar the name of the function. The name
of the function is fun4Bisecx okay. So, f(x) is the name of that is the function. So, f(x) is exactly

what we give over here okay.

This is nothing but our f(x). Just before f(x) we need to give with an inside the bracket, the name
of the variables that we are going to solve for. And our initial guesses are 1 and 4. We will
separate them with either a comma or a semicolon okay. And we press enter and we will get

xSol.

If you recall from the lecture 5.1, 3.4162 indeed was the solution that we got in the previous
lecture okay. Let us go over again okay in the syntax of fzero. fzero is going to be xSol, the
solution is going to be fzero in brackets, the name of the function, name of function of variable x,

the initial guesses. Our initial guesses were 1 and 4 okay.

Now before the name of the function on x what we had was, the variable that we need to solve
for @ x. So @ in bracket the variable we need to solve for followed by name of the function file.
The function file was fun4Bisec. I will later type fun4 and click and press tab over here and

MATLAB will auto fill this for me based on the function names that match with fun4 okay.

So this is really this is really the main part of fzero. The main part of fzero is how to pass on that
function. And what are or how to give the initial guesses okay. We press semicolon at the end of
it and we will get the solution without a going on the screen okay and we get xSol okay. Let us
say we were to give this instead of 1 and 4, let us say we were to give this as 2 and 4 again. 2 and

4 bracket.

The solution and to bracket the same solution and if we were to press enter, we are going to get

the same solution again. If you see on to your left hand side, our value of xSol has not really



changed. Our xSol is the same as 3.1462 okay. Now instead if we were to give our initial guesses
as 0 and 1 okay, now this is a problem. The problem is because log (0) cannot be obtained. So let

us change this from 0.

Let us change to a very small number say 1e-5 and let us see what we get okay. And we give this
and now we are getting the other solution. The other solution was 0.1586 and the first solution
was 3.1462. Recall what we did in the previous lecture. We had shown that the curve intersects
the x axis at 2 different points. We have now found out how to get both the solutions using fzero
okay. (Video Ends: 10:34)

So let us go back to power point okay.

(Refer Slide Time: 10:37)

Problem to Solve Q

{f

Use fzero {0 solve the nonlinear equation:
2-x+In(x)=0

Modify bisection method from previous lecture

What the problem that we just solved was, to use fzero to solve the nonlinear equation 2-x+In(x),
we have created a function called fun4Bisec and use that function and passed it on to fzero. Now
what we are going to do is the bisection method from the previous lecture. We are going to
modify it okay. Instead of hard coding our f(x) inside our bisection method, we want to use the
function that we just created for fzero and we are going to use that function in our bisection

method.

(Video Starts: 11:10) So let us go back to MATLAB and do that okay. So again just to recap what

our aim 1is, let me bring up our let us clear and clc clear all. Let us edit our bisection rule that we



created in the previous lecture and we are going to modify that okay. In what we had done was

this f(x), we had directly hard coded it in the overall running program.

Use a new method in which we are going to use this function fun4Bisec that we recently created
in order to solve using the bisection rule okay. And this change is going to be fairly simple and
everywhere. Where we are going to calculate function? You will, the function we are going to

replace it with the function call itself. So fun4Bisec (x1) okay.

That is all. Remember what we did a few minutes earlier right. We said fun4Bisec okay. And
fun4Bisec (4) gave nothing but the value of the function, fun4Bisec (1) gave nothing but the
value of the function. If we were to say x= 4 and we were to call fun4Bisec with x, is going to

give the value the function f(x). So all we going to do is, change this to fun4Bisec.

So let us just change this to fun4Bisec and fNew is also going to be fun4Bisec fNew sorry, fNew
is going to be fun4Bisec, xNew, fun4Bisec. And that is all the changes that we need to do is
nothing else that is changed. Let us save this and solve it in MATLAB okay. And the way we
going to do is bisecRule, enter. And let us see our xNew and xNew is 3.1462. Now let us change

our initial guesses instead of 1 and 4, let us change them to O or rather le-5 and 1.

Let us run this fun4Bisec sorry, let us run this bisecRule and see what the solution is going to be.
xNew is going to be 0.1586 as we had obtained using our fzero method as well okay. And finally
what we are going to do is, we are going to make one more change in our MATLAB code and we
are going to have a stopping criteria based on an error criteria okay. So error tolerance are, let us

call this as tolX okay.

Error in x is 1e-6. So if the error falls below or if x new-xI falls below 1e-6, we are going to stop
this solution technique and that is what we are going to do over here. If abs of err is going to be
less than tolX okay, then break. This is something that we have seen earlier also end .So we are

going to break end less than 25 iterations.



So let us actually change the maxlIter to 100 okay. So that we give enough number of iterations
for the bisection rule in order for it converges. Let us give our initial guesses as before are 1 e-5
and 1. Let us save this and run bisecRule. Let us clear the screen clc and bisecRule okay. And our

xNew in this case is 0.1586 okay.

And our and if we check our error, our error is 9*10 » -7 which is less than 10 * -6 okay. So now
let us do one final thing. Change the initial guesses back to 1 and 4 and see how this runs okay.
And run this bisecRule and press enter and our xNew is going to be the solution 3.1462.

That is the other solution over here. Our error is going to be 7*10 ~ -7. So our solution 3.1462
has converged to the error tolerance that we needed. And if we type i, we will know that we have

converged in 23 iterations okay. (Video Ends: 16:33)

So what we have done. To recap what have done in this lecture, we have done 2 things in the
lecture. The first thing that we did was to use fzero in order to solve the nonlinear equations 2-
x+In(x), the second thing that we did was 2 make our bisection rule better with 2 different things.

One is to make it use the function fun4Bisec instead of hard coding it inside the script file itself

And the second change with it was that we stopped when as particular stopping criteria was met
when the tolerance value was less than the desired accuracy. At that time we stopped the
execution of the loop rather than letting the loop continue for a large number of iterations okay.

So with that I come to the end of this lecture.

So thank you for listening to this lecture and in the next lecture we are going to cover the next set
of numerical techniques for nonlinear algebraic equations. Specifically, we are going to start with
fixed point iterations which is an open method and not a bracketing method. Thank you and see

you in the next lecture.



