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Linea Equations - Tri-Diagonal Matrix Algorithm

Hello and welcome to MATLAB programming for numerical computations. We are in module

number 4, and this is the last lecture of this module. In module 4 we have been covering linear

equations of the type A(x) =b where, A is an n/n square matrix and b is an n /1 column vector. In

this lecture, we are going to cover, a special type of algorithm known as the Thomas algorithm or

Tri-Diagonal matrix algorithm.

(Refer Slide Time: 00:43)

So, let us look at how a Tri-Diagonal structure looks like. The matrix A shown over here is, what

a Tri-Diagonal matrix will look like. So basically, there is diagonal elements d1, d2 up to the dn

okay, there is 1 sub diagonal row which is l2, l3 up to ln, and 1 super diagonal that is 1 above the

diagonal which is u1, u2 up to un-1 okay. This is known as a Tri-Diagonal structure. 

Lot of engineering problems, end up reducing to a Tri-Diagonal matrix structure, or sometimes

what we have is, what is known as banded diagonal structure. Tri-Diagonal, is a specific example



of banded diagonal structure, with the band width=3. So, let us look at 1 particular example

where,  we get  a  Tri-Diagonal  structure.  This  example  is  from the  computational  techniques

course module 3 part 5 and the link for which is given over here okay.

(Refer Slide Time: 01:28)

If we have a rod, in through which, conduction is taking place, one end of the rod is held at 100

degree Celsius and the other end of the rod is at 25 degree Celsius, and this rod is losing heat to

the surroundings, then the overall model for the system, can be derived, to obtain something like

this okay. 

(Refer Slide Time: 02:05)



Now if we want to solve this set of equations, we can use the numerical differentiation that we

covered in module 3 okay. And the central difference formula will be of this type. Now this is

substituted to the left-hand side and right hand side becomes, gamma multiplied by Ti-25. You

write this for multiple locations that means at the initial point T1, the next point T2, T3 and so on

up to Tn+1 okay. If you do that, you will end up reducing, this particular differential equation

into, n linear equations in n unknowns.

(Refer Slide Time: 02:37)



And  these,  linear  equations  for  example,  the  example  that  we  covered  in  computational

techniques lecture, consisted of discretizing in 10 intervals. If gamma=4, then the first equation

is going to be T1 =100, and for all the nodes within the rod, we get equations. If we do the

derivation, will get the equations of the type, T1 - (2+ alpha) T2+ T3=beta and so on and so forth

okay.

So,  what  you can see over  here.  The first  equation,  the diagonal  element  is  1  and the non-

diagonal elements are all 0. And for the vector b, the first element is 100. If you look at the next

equation, the diagonal element is (- 2 + alpha) okay. And the sub diagonal and the super diagonal

elements  are  both  equal  to  1.  So,  let  us  go  on  to  MATLAB,  and start  trying  to  solve  this

particular problem. 

(Video Starts: 03:38) myTDMA, I have already created a skeleton of the structure. So, first step,

that  we are going to do is,  we are going to create  the problem matrices  okay. (Video Ends:

03:53). If we go and look at power point again, okay what we are going to have is, basically the

A matrix of the sort. We have the diagonal elements which we are going to store in vector d. The

super diagonal elements where we are going to store in vector u, and the sub diagonal elements

which we are going to store in vector l. That is what we are going to do okay.

(Video Starts: 04:18) So, our vector l, l(1, 1) is going to be equal to 0 okay. Let us look at this

again l(1, 1) = 0 because there is no element, in the first row for l. And in the last row, ln is also

equal to 0. So, we will do that as well okay. Ln, we should actually, let us just put this as ln+ 1, n

=10 because 10 intervals and therefore we have 11 nodes so this is also equal to 0. We need to

create n first. In this case, our n was equal to 10, our alpha was equal to 0.04 and our beta was

equal to -1. Let us just check those things, alpha=0 .04 beta=-1 and n=10 okay.

Likewise, for u also we are going to get, u (1, 1) =0. Remember, the first equation was just, T1 =

100. So, u (1, 1) was 0 and u (n+ 1, 1) was also equal to 0. Again, recall the last equation, was

also T11=0 sorry, T11=25 which meant that, the non-diagonal elements were all 0. And the entire

set of diagonal elements, that we have seen is the first guy, and the last guy, are both equal to 1

whereas, everything else is -2 + alpha okay.

So we will write d(1,1)=1 and d(n+1,1) =1 again and likewise b(1,1) was equal to 1 and sorry,

was equal to100 and b( n+1,1) was equal to 25. So, that is the structure that we have created. The



first and last row are taken care of. Now we want to take care of all the middle rows, so l(2:n,1)

equal to, we will decide this, u(2:n,1) again, we need to decide this. I will just put question marks

here, again this is an error but we will change that immediately. (2: n, 1)=?? And b (2: n, 1)

again=?? So, let us see what we need to put in our vector l okay. (Video Ends: 07:12)

So, our vector l, as we had said was, 1 * T1 that gets l. And 1 * T3, that is in u. So, u l3 is going

to be sorry, l2 is going to be=1, l3 is going to be also equal to 1. u2=1, u3=1 and so on. (Video

Starts: 07:38) So, all the middle elements, of both l and u matrices are all equal to 1. So, we will

put this, the diagonal elements. If we check the diagonal elements are (-2+ alpha), so we will put

that (-2+ alpha).

And our b elements are equal to beta. So, we will put that beta. And with this, we have done with

creating the problem matrices. We have saved this. (Video Starts: 08:11) Let us go to MATLAB

and run myTDMA. To ensure that, we do not have errors at this stage okay. We do it right. So, let

us say, were okay. 

So here, if you look at this particular code, what I have done is, I have made a typo, instead of

putting a comma over here, I have put a dot, which is type of typo. So, let me go and change that,

and save, and let me run it, and see whether we get errors. So, does not look like. So, clc, what I

had also done was create a small function called show matrix. 

So if I call the showMatrix and give (l, d, u) okay. I will get our A matrix over here okay. This is

just so for our ease of discussion, and I will just print, first 5 elements of this okay. So, these are

the 5 elements, and this looks exactly as we wanted, our first guy is going to be 1, our second

guy is (1- 2+alpha) and 1, the third guy is 0 1 (-2+ alpha 1) so on and so forth okay. And if we

were to print out the entire A matrix. We will get the desired result as well okay. And let us also

print out the b vector. And so, this is the b vector, and this is the A matrix okay. 

Now at this stage, what we can also do, solve it using the methods that we have seen in lecture

4.1 which means our x.  We will call this, as x1=A \ b and this is the solution okay. So, this is the

overall temperatures, in the rod going from one end to the other, from the 100-degree Celsius end

to the 25 degrees’ Celsius end.  This is the result. What we want to do is, reproduce this result not

using the slash but using the TDMA algorithm. (Video Ends: 10:18)



So, how does the TDMA algorithm work? You can go again to this link that is shown over here

and you can see this video to try to understand how the TDMA or the Thomas algorithm works?

We are going to just use that, it is kind of similar to the gauss elimination, except we account for

the fact that, all the other elements except d, l and u are 0. So, we do not need to do all the

computation, that gauss elimination does, that is the one.

The second difference is that, at in each step, we are going to divide by the pivot element, d1 A

(1, 1), A1, A (2,2) so on and so forth, before doing a typical gauss elimination step. So, let us go

and start working that out. (Video Starts: 11:07) In the Thomas algorithm the first step, is going

to be, normalized by dividing okay. Let us put this in a loop, for i= (1 : n+ 1) the loop should not

be (n+ 1) we will come to that later, but for now, I have, let us just try to do it for the entire loop

okay.

So, the first row is going to be divided by, di, or any row is going to be divided by d. So at

whenever, you know, A (i, i) is the pivot element, everything to the left of the pivot element is

already 0. So, we do not have to worry about dividing anything in the l vector. We only have to

look at the d vector, the u vector, and the b vector. But keep in mind that because we are dividing

by d itself, we do not have to do anything with respect to d vector either.  

So, what we are going to do is, u(i) is going to be nothing but u(i) divided by d(i), and same thing

with the b also b( i) = b( i) / d(i) and d(i) is going to be equal to 1. Why because d (i) is going to

be old d(i) divided by itself so therefore it is equal to 1 and that is the only thing that we need to

do. Let us also put end over here okay. So, we ended up normalizing it by dividing with the d (i).

So, that is the step that we are going to take. So, that is the first step with respect to normalizing.

(Refer Slide Time: 12:25)



So, what we did now was, with A (1, 1) as the pivot element, row 1 was divided by that pivot

element. So, that in the first row. Now we have 1, u divided by d 0, 0, 0 and so on. And the last

guy is b divided d okay. Now we are going to use that pivot element, to make zeroes in the first

column. 

Now where do we make to need to make 0? We only need to make 0 in the row number 2, or row

number (i+ 1).  Why because,  that  is  the only non-0 element.  So,  l  (i+ 1) is  the only non-0

element in that pivot column, using pivot element for elimination okay. So, our alpha is going to

be nothing but l(i+ 1). Why, because our d (i) that means, A( i, i) is already equal to 1, because of

this step okay. 

So if we want to make 0, in the i+ 1th row,  ith column, then we need to just multiply row i with l

(i+ 1) and subtract it from row (i+ 1) and that is essentially what we are going to do. Your alpha

is just going to be l (i+ 1) / d(i) but d(i) is already 1. So, you do not need to make that division

okay. So, alpha=l (i+ 1), l (i+ 1) is going to be equal to l (i+ 1) - alpha okay which is basically

going to be equal to 0. So, why we should do this extra calculation? We do not need to do this

extra calculation. We can directly put that equal to 0 and that is essentially what we have done

okay.

Now d (i+ 1) is also going to change. And d (i+ 1) is going to change, because d (i+ 1) is going to

be d (i+ 1)-alpha * u(i)-alpha * u(i) okay. And the same thing with b also b (i+ 1) is going to be



equal to b (i+ 1) okay. What is above b (i+ 1)? Above b (i+ 1) is exactly d (i). So, it is going to be

-alpha * b (i) okay. So, that is the thing.

So, what about the u (i+ 1)? The element above u (i+ 1) is 0. The element above this guy is 0. So,

if we do any kind of a computation, it is still going to result in u (i+ 1). So, we do not need to

change u (i+ 1). So, we are done over here. So, that is all we need to do with respect to gauss

elimination okay.

This gauss elimination is applied to a special structure, the banded structure, of the Tri-Diagonal

matrix. So, let us now run this okay. I expect an error, and I will come to that, when we actually

get an error. I expect an error, and I will explain that in a minute. Let me just run it, okay and let

us see what error we get okay. Error is, the attempt to access l (12) index out of bounds. So, what

is happening over here is, this is when i= (i: n+ 1) with which means when i=11 okay we have

done this normalization, that is fine, however this cannot continue. Why, because there is nothing

called, i l (12) or d (12) or b (12), our matrix ends, at row number 11, column number 11 okay.

So, what we needed to do really was, we need to do only 10 row operations and not 11th row

operation because r (11) is not going to be used to change anything below because r (11) is the

last row. So we need to use this, to go from i= (1: n) only okay. So, let us do that. Let us go to

MATLAB, you clear, clear all, clc and run myTDMA okay. And we have our results over here

okay.

Now, what we want to do is, we want to check our A matrix. So A is showMatrix, and then we

want to display A (1: 5) and see how they look like okay. So, this is how our A matrix is going to

look. So, A matrix has now, an upper triangular structure and a special kind of upper triangular

structure. Only the u elements in the upper triangular structure are non-zero, everything else is

zero

So, we have your A (i, i) as non-zero. A (i, i+ 1) is non zero and A (i, i+ 1) is nothing but equal to

u(i) okay. So, when we do back substitution okay. A (i, i) is already equal to 1. When we take this

guy, to the right hand side, we are going to get b(i) - u( i) * x( i+ 1) okay. And that is our x (i).

We do not need to divide by A (1, 1), because A (1, 1) is already equal to 1. So, back substitution

is also significantly simplified okay.



So, our first guy is, our first step is going to be, we are going to say x=zeroes (n+ 1, 1) and x (n+

1, 1) and x is going to be equal to b (n+1) / d (n+1) okay. Why do we need to do divide d (n+ 1),

is because all these things, we have done it, only until row number 10, row number 11? We have

not yet divided by the pivot element. So, we need to do that, in the back-substitution step okay.

And then we have the for loop for back substitution for i=n in steps of (-1: 1) okay.

And our x (i) we said was going to be equal to b (i) – u (i) multiplied by x (i+1). Keep in mind, u

(i) is nothing but A (i, i+ 1). A (i, i+ 1) is multiplying with x (i+ 1). We take that to the right-hand

side, subtract it from b (i) and divide by 1. We do not need do that division because, dividing by

1 is going to give us the same result and end okay. And that is the back substitution that we

needed. So, let us see whether we are going to get any errors or this is going to run like a chance.

So, let me click the run, and let us go back to our command prompt, and see what solution x we

are getting okay. So, this is what we are getting as x. Let us check back, with x1 and compare the

2 results okay. So, as we can see, the results using the gauss elimination that MATLAB used

when it did backslash. And the results using our TDMA algorithm, they are matching exactly

okay.

So TDMA algorithm, is nothing different, it does nothing different from gauss elimination with

back substitution, except for the fact that exploits the structure of the Tri-Diagonal matrix. That

means, there are only 3 elements in any row which are non-zero and therefore, we need to take

significantly lesser number of computations, compared to a standard gauss elimination algorithm

okay. (Video Ends: 20:48)

(Refer Slide Time: 20:50)



So, that is what I wanted to cover with respect to Thomas algorithm. What I would put as an

exercise for you guys is, to do the same problem but with a larger number of examples. And that

is going to be first problem and the second problem, what it is going to be is, to solve the exact

same problem that we have done in this lecture. To solve this exact same problem but using the

gauss elimination method. 

So here you will need to construct your A matrix and your b vector and compute this using gauss

elimination. So, what you will need to do is basically you create this A matrix and the b matrix. I

have not shown you my code, which is the show matrix code, which is, which I used in order to

calculate a matrix from l, d and u that is the main crux of your second problem of this assignment

So, with that I come to the end of lecture 4. 5, and indeed to the end of module 4. In module 4,

we have covered solving linear equations of the type Ax=b, in lecture 4.2 we covered naïve gauss

elimination,  lecture  4.3  we  change  the  gauss  elimination  to  gauss  elimination  with  partial

pivoting, as well as we saw very quickly how the LU-decomposition works. 

In lecture 4.4, we moved on to what is what are known as iterative methods and covered gauss

Seidel method, and in today’s lecture that is the final lecture we covered a special method known

as Thomas algorithm for solving Tri-Diagonal system of equations. Thank you and I will see you

next week where we are going to start working on solving nonlinear equations. Thank you and

see you in the next week.




