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CVD Transport Phenomena: Constitutive Laws
  

Good morning  and  welcome  to  the  next  lecture  in  our  course  on  chemical  engineering

principles of CVD process. In the last  lecture we started covering the basics of transport

processes  that  occur  in  CVD systems and we started out  by classifying various  types of

chemically reactive flow systems in terms of the basic characteristics discussed how to define

volumes for various applications and then we discuss the conservation laws governing mass

conservation, momentum conservation, energy conservation and entropy conservation.

Towards  the  end of  the  lecture  I  mentioned that  the  right-hand side  of  the  conservation

balances reflect the constitutive equations that are needed to close the system of equations,

constitutive  laws  actually  the  name  itself  constitutional  means  that  it  depends  on  the

Constitution of the system or the fluid. So constitutive law by definition unlike conservation

laws is specific to the system or fluid under concentration.

It is necessary to provide closure to the conservation equations, the 3 most predominant types

of constitutive laws or the equation of states chemical kinetic equations and rate expressions

and diffusive fluxes and when we talk about diffusive fluxes in particular parameters such as

viscosity, thermal conductivity and diffusivity become important now in general a diffusive.

Now in general a diffusive flux law can be stated in a linear fashion you can say that the flux

is proportional to the prevailing gradient of the field the density parameter that is relevant.

So for example the mass transfer diffusive flux can be taken to be linearly proportional to the

prevailing concentration gradient.  The heat  flux can be taken to  be proportional,  linearly

proportional to the prevailing temperature gradient and so on. Now this linearity is a critical

assumption because it implies several things. Most importantly it says that the flux that is

happening,  diffusive  flux  that  is  happening  at  any  location  at  any  instant  in  time  is

independent  of the events that  are  occurring far  away from that  location and events that

occurred for back in time.

So as we were discussing yesterday action at a distance affect and also the memory effect or

presumed to be absent when you define diffusive flux loss and that greatly simplifies how a



definition of the diffusive flux law. Now if we take momentum diffusion as we mentioned

yesterday, momentum diffusion is reflected as a stress term.

And in particular the pie operator which has the 2 components the thermodynamic pressure

component and the extra stress or viscous stress component is a reflection of how momentum

defuses.
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And if you look at the second component Tau which is the stress term, as you know that there

is 2 types of stresses, there is a normal stress and the shear stress. Normal stress is typically

expressed as some Tau xx and the shear stress would be expressed as Tau yx. Shear stress by

definition is the action of a force in a direction x which is acting on y directional force acting

on a surface in the x direction, right?

As you will see when you have flow past of flat it and things like that and you know that this

Tau yx term is related to mui times Del Dx by del y where this mui is called the viscosity

coefficient  and  of  course  new  is  different  for  different  fluids  every  gas  has  a  different

viscosity, every liquid has a different viscosity and so on. Now in order to then close the

momentum conservation equation and need to know what is the Tao term in order to know

that you need to know what is mui?

And how do you estimate mui, there is basically 2 ways mui can be derived from the kinetic

theory  of  gases,  you know, from first  principles  or  it  can  be  experimentally  determined

essentially you run shear stress for example as a function of various velocity gradients and



take  the  slope  and  that  will  give  the  viscosity  coefficient.  So  in  constitutive  laws  the

constitutive coefficients can be derived either theoretically from first principles or phenomena

logically from observations of experiments.

(Refer Slide Time: 6:02) 

I  am  sure  you  are  familiar  with  Chapman  Enskog,  have  you  read  that  in  your  fluid

mechanics? Chapman Enskog, which says that for viscosity particularly of low-density gas

mui can be related to the other properties by the following equation pi mkBT to the power

half over pi Sigma squared omega mui which is a function of kTB over Epsilon mui, have

you seen this expression, does it look familiar?

So it is basically a way of relating viscosity to the molecular weight of the species of the

liquid or the fluid, the Boltzmann constant the prevailing temperature, Sigma is the molecular

size or it  is  the spacing you could say between adjacent molecules and this  parameter is

actually a correction factor for the fact that not all molecules behave like hot spheres, so it has

all the hot spheres correction. And this depends on this parameter kT, sorry it is kBT not kTB

Boltzmann constant times temperature. 



(Refer Slide Time: 7:36) 

So the 6 omega mui can be written as some 1.16 times kBT by Epsilon mui to the power

minus 0.17 I think where this Epsilon mui is basically an activation energy barrier for fluidity

of the fluid. So this is the general expression governing the dynamics viscosity of the fluid. If

you have a measure of fluids you can estimate the mixture viscosity as summation of mi to

the power half yi mui i divided by summation mi to the power half yi are again m’s the

molecule weights and y sort the mole fractions.



(Refer Slide Time: 8:51)

If you look at the temperature dependence of mui, you can see that for a gas the temperature

dependence is fairly weak is about 1.5 to 1.8 because according to this you have T to the

power half dependence but there is also temperature dependence that is built-in here and so

the net effect is fairly a weak dependence of mui on temperature. Of course for liquid you

know the viscosity has a significant dependence on temperature. As the temperature increases

the viscosity will decrease and again that depend on the activation energy or fluidity of the

fluid? 
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When you have turbulence in the system restore villain viscosity mui t that is introduced and

mui t plus mui is the mui effective which is the prevailing viscosity of a turbulent fluid is

essentially  the sum of  its  viscosity  and the laminar  conditions  plus  a  turbulence induced

viscosity of the fluid.

So the net viscosity can be written as mui effective equals, mui plus mui t. So that is just a

very quick recap of how the dynamic viscosity of a fluid can be calculated essentially from

the kinetic theory of the gases. 
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Now when we look at heat flux you know that there is Fourier heat flux law which says that

Q double prime equals minus k gradient in temperature where k of course is the thermal

conductivity. However  this  is  for  essentially  a  situation not  involving mass transfer, as  I

mentioned yesterday when you have heat fluxes in systems that involve multi-component

mass transport, you need to include another terms summation over i ji dot double prime hi

which accounts for the fact that as species diffuse enthalpy also defuses and that set up a heat

flux as well. So in general expression for heat flux in a multi-component chemically reacting

flow system such as a CVD reactor as to have a mass diffusion flux related term also built

into it. 



(Refer Slide Time: 11:57)

Here obviously the key parameter is your thermal conductivity k and again the Chapman

Enskog theory says once you know that what viscosity is you can calculate k based on the

viscosity of the fluid and the formula for that is 15 by 4 times R by M times mui times 1 plus

4 by 15 times CP by R minus 5 by 2 where CP of course is the heat capacity under at constant

pressure.

And k makes a  summation over i,  in this  case it  is  mi the power 1 3rd yi  ki  divided by

summation  over  i,  mi  to  the  power  1  3rd yi.  So  thermal  conductivity  as  well  it  can  be

measured  from experimental  observations  because  thermal  conductivity  is  fairly  easy  to

measure  simply  by  measuring  temperature  gradients  which  is  much  easier  to  measure

comparative velocity gradients obviously.
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So thermal conductivity is much easier to measure experimentally, so typically the route that

one would take is that if you do not want to calculate mui and k from first principles then you

would run experiments to measure k and then use this formula, now that you know k you can

go back and there estimate mui, right? Because I said mui viscosity is very very difficult to

determine through excellent observations where thermal conductivity can be obtained much

more easily.
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And just  like with viscosity there is  also kt  parameter  which is  the thermal conductivity

associated with turbulence plus k will give you k effective and by the way the turbulence

terms mui t mKT and we will see later on that similarly for diffusivity there is Dit plus Di

which is equal to Di affective where Di the Fick diffusivity under laminar conditions and Dit

is the turbulence enhanced Fick diffusivity.

The interesting thing to note is that Dit is absolutely no relation to Di, similarly kT is no

relation to k mui t has no relation to mui they are completely independent of each other, mui

t, kt and Dit only depends on the prevailing condition and also interestingly mui t, kt and Dit

are very close to each other in terms of the relevant ratios. 
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So if you take mui t by rho t which is of course the kinematic viscosity mui t, you know, if

you take the dynamic viscosity and divide by density you get the kinetic viscosity. If you take

the ratio of mui t to Dit, what do we call that mui by D, any idea? It has got a number, name

to it. Kinematic viscosity divided by diffusivity? It is called the Schmidt are Scit. 

(Refer Slide Time: 15:36)

And similarly if you take kT by rho Cp that is called alpha t thermal diffusivity and there is a

name for alpha t by Dit, any idea what that is? Lewis number, so the point is all these are

actually  close  to  unity. In  other  words  once  turbulence  sets  in  the  associated  kinematic

viscosity, thermal diffusivity and Fick diffusivity are all almost equal. In other words once



turbulence sets and the affect of turbulence is much more predominant compared to the affect

of the fluid itself. So the nature of the fluid does not matter as much as the nature of the

turbulence. However under laminar conditions it is a nature of the fluid that really determines

this transfer coefficients.

So,  let  us  about  diffusivity  which  is  obviously  a  parameter  that  is  most  relevant  to  this

particular course, so we should talk about it in a little more detail. Now according to Fick’s

diffusion law which he introduced back in 1885, the mass diffusive flux of a species in the

case of an isotropic, isothermal fluid is proportional to the prevailing concentration gradient

and it occurs in the direction of decreasing concentration, right?

Again these are very important definitions, when we says isentropic what it means is that the

diffusivity is equal in every direction and when we say isothermal what we mean is there is

no temperature gradient which can also drive mass flux according to phenomena known as

thermal diffusion. 
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So under these restrictive conditions you can write the diffusive flux minus ji dot double

prime is equal to Di rho gradient of omega i as equal to Di rho gradient of omega i again this

is for isothermal and isentropic conditions and also there is an assumption here that it is a

pure material that is not a mix of species but in the real system particular in the CVD reactor

you know that there are going to be hundreds of species.



So the effective diffusion coefficient of a single species is going to be dependent not only on

the  prevailing  temperature  and pressure  conditions  but  also the  mole  fractions  of  all  the

species comprising the system because when you have ask a case where you have a dilute

species which is diffusing in a low-density gas which is typically the case and a normal CVD

reactor.

(Refer Slide Time: 18:40)

So for that particular combination of a dilute diffusing species in a low-density gas, you can

write  the  effective  or  prevailing  diffusion  coefficient  as  the  aggregate  of  all  the  binary

diffusion coefficients. In other words as these dilute species move around they are going to be

encountering  other  molecules  that  are  present  in  the  system  and  each  binary  encounter

imposes a certain diffusion coefficient. This diffusion coefficient is basically something that

reflects random walk. 
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Random walk is basically the distances covered between one collision to the next and so you

can essentially estimate binary diffusion coefficient Dij which simply reflects the diffusion a

path associated with binary collisions and from this you can estimate that is Di mix  the

diffusion coefficient of species i in the measure of gases rather than in a binary system. 

(Refer Slide Time: 20:39)

So that is an expression here for Dij which was as 3 times kBT over 8P times pi kBT mi plus

mj over mi mj the whole thing to the power half 1 ovre pi sigma ij squared omega d which is

a function of kBT over Epsilon d. Okay, so if you compare this expression to what you wrote



down for viscosity and thermal conductivity, the key differences are pressure is now a key

term and it is the denominator.

As pressure increases diffusivity decreases which is why if you want to enhance diffusion

rates you use low pressure system, so that is the important thing to keep in mind. The second

thing to keep in mind is here the temperature dependence is close to T times T to the power

half  or  roughly  1.5  again  there  is  some  temperature  dependence  here.  So  the  actual

temperature dependence of the diffusion coefficient is roughly T to the power 1.5 to 1.8.

The other thing you need to keep in mind is because we are talking about a binary diffusion

process, there is this term called Sigma ij, what that reflects is, the equilibrium distance of

separation between 2 molecules.

(Refer Slide Time: 21:47) 

So if  you look at  the  force  between any 2 adjacent  molecules,  Van der  waals  force  for

example it will follow this typical pattern where 0 is here and there is a particular distance of

separation between the 2 molecules, so what we are plotting here is essentially the Epsilon ij

or the intermolecular potential as a function of the distance of separation.

So as the molecules come very close together there is a repulsive force as they move further

away there is an attractive force. So there is a particular distance of separation between 2

molecules which results in a net force of 0 which is an equilibrium position of rest between

these 2 molecules.  So that  is  essentially obtained by plotting the intermolecular potential

between molecules i and j which is Epsilon ij as a function of distance of separation and the



distance at which it reaches 0 is what we call sigma ij. So it is intermolecular distance of

separation corresponding to the point where Epsilon ij equal to 0.
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And again this omega D parameter is written as 1.16 times kBT times Epsilon ij to the power

minus 1.7 and again it corrects for the fact that the diffusing molecules are not hot spheres.

The closer they are to our hot spheres condition the closer omega D will be to 1 but in general

you have to include this correction factor. So once you have estimated this parameter the

binary  diffusion  coefficient,  the  diffusivity  of  species  i  in  the  mixture  of  species  can  be

derived as 1 minus yi times summation of j equal to 1 to N where j is not equal to i of yj over

Dij the whole thing to the power minus 1.
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So it  is  essentially  estimated as a  beaded sum of the binary diffusion coefficients  which

enables us to calculate the prevailing diffusion coefficient in the case where the collisions are

not only binary but multi-species are involved. So once we have estimated the mixture of the

diffusivity of species i in the mixture this again we are assuming that it is a single parameter

for the system which means you are still assuming isotropic.

The only assumption we have relaxed here is the, you know, the binary assumption we are

allowing multiple species to be present and we have estimated the diffusion coefficient in the

presence of multiple species but the fact that the only have a single scalar value for Di mix

essentially implies that we are still assuming it is an isotropic fluid and that the diffusivity in

every direction is the same.

But  in  reality  for  many  fluids,  particularly  fluids  that  are  under  shear  stresses  extreme

turbulence this may not be a good assumption. So we have to, in such cases realize that what

we have defined here is like an effective or average diffusion coefficient which is a scalar

representation of the diffusion vector at that is present in the fluid.

Now in the case where you have a heavy species, let say that your molecular weight of the

diffusing species exceeds the molecule weight of the carrier gas which can very easily happen

in CVD systems because we use H2 as the carrier gas but the depositing species may be SiH4

which is much heavier and larger than the H2 molecule. In such cases how do you estimate

the diffusion coefficients?



So here you do not really use a random walk principle  to estimate diffusion coefficients

instead you go to the Stokes Einstein theory, if you remember which is based upon inertial

effects.  So  you  essentially  try  to  track  each  molecule  like  particle  and  you  estimate  its

diffusivity just like you would estimate the diffusivity of a particle in a fluid. So you may

recall  some of  the  experiments  might  have  done  in  mechanical  operations  and so  on  to

estimate the diffusivity of a particle. 
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And if you remember the expression that comes out, so this is for heavy vapours in a gas or it

could even before solids in a gas or in a liquid. The expression for the diffusion coefficient Di

equals kBT over 3pi mui Sigma i effective, right? So in the case of a particle you would

simply substitute Sigma with a particle diameter DP but in the case of heavy molecule you

use a molecule size the effective molecular size of the species appears in the denominator and

so your modelling diffusion process in this particular case akin to inertial process.

You  are  assuming  that  particles  are  diffusing  or  heavy  molecules  are  diffusing  in  a

mechanism that is very similar to how inertial settling happens. So you are kind of modelling

it as a sedimentation process it is another way to put it and this turns out to be a good way

again to estimate the diffusivity of heavy vapours in a lighter gas or as I said particles in a gas

or a liquid. So the other type of diffusion process that can happen is after the molecule has

absorbed on a surface it has diffusion along the surface and in fact that is a very critical

process in achieving the final state of the CVD film on the substrate.



(Refer Slide Time: 28:52)

So when we talk about surface diffusion it has very different characteristics when you write

the equation because in this case what you are really trying to model is the migration of an

absorbed species one industry interstitial site to another you are trying to estimate the flux of

that  and from the  flux  you retry to  estimate the diffusion coefficient.  The diffusive flux

associated  with  the  species  essentially  jumping  from one  side  to  the  next  available  site

depends on, you know, several parameters including the activation energy that is required for

the molecule to 1 interstitial site to another and also the number of attempted jumps.
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You know, how frequently does  the  molecule  even attempt to  jump.  So in  this  case the

diffusion coefficient for absorbed can be written as a combination of a geometric factor times

the lattice dimension squared times an attempted jump frequency parameter times activation

energy parameter.

(Refer Slide Time: 30:34)

So the activation energy parameter can be written as exponential of Epsilon D over kBT, so it

is the energy that is required that is that you have to get over if you want move one molecule

from one interstitial site to the next one.



Now if you look at this expression the interesting thing of curves is that the geometry plays a

huge  role.  For  example  if  you  have  features  on  the  substrate  that  make  it  difficult  for

diffusion to happen that can have an inhibiting effect on the diffusion process. On the other

hand if you have certain well-defined diffusion pathways to begin with it will actually speed

up the diffusion process. So all this is club into this geometric factor term.

The lattice that mention reflects the crystallinity of the substrate. A crystalline structure is one

where the energy required to go from one interstitial site to the next can be quite high when

energy barrier. So the  degree  of  crystallinity  which  is  reflected in  a  lattice  dimension is

another  key  parameter  in  determining  the  rate  of  diffusion  because  it  attempted  jump

frequency.

Now that is a temperature dependent parameter, the higher the temperature the more will be

the frequency of attempted jumps from one place to the other which is why if you have a

CVD film on a surface and you want to make it more uniform, if you want the surface spread

to be equal and if you want the film to be more adherent you typically raise the temperature.

Because it facilitates the moment of atoms across the surface after have been absorbed it just

energised the atoms and makes them more willing to jump from one place to the next. Of

course finally again as the temperature increases it becomes easier to overcome the activation

energy barrier and move atoms from one place to the other. 

So the thing to remember with diffusivity is that there is no single expression for it depending

on the particular  physical  situation at  hand,  you know, whether we are talking about  the

diffusion  of  the  precursor  vapours  to  the  substrate  that  is  governed  by  a  different  flux

diffusivity  coefficient  and then  the actual  migration of  agglomerated or  heavier  atoms is

governed by a different diffusion equation.

And finally once the diffusing molecule has been absorbed on the surface, its diffusivity on

the solid surface is governed by a different equation in the affect of temperature and pressures

are very different in each of these cases. For example surface diffusion is dominated by the

temperature effects but pressure has very little influence whereas diffusion in the gas phase as

we saw there is a very strong effect of pressure inverse effect.

Whereas the temperature effect is more moderate between T to the power 1.5 to 1.8 and in the

case of heavy vapours again the temperature effect is quite significant but pressure is not,



okay. By the way I do not think you need to remember all these actual equations but what you

should  recollect  some  of  the  (())  (33:53)  dependencies,  you  know,  how  does  viscosity,

thermal  conductivity  and  particularly  diffusivity  depend  in  various  situations  on  system

parameters like temperature, pressure and concentrations and so on.

Okay,  so  what  we  have  quickly  gone  through  in  this  lecture  is,  ways  to  estimate  the

constitutive coefficients particularly the viscosity, thermal conductivity and diffusivity which

needs to be plugged into conservation laws in order for us to be able to solve the equations

and  obtain  velocity  distribution  the  temperature  distribution  as  well  as  the  concentration

distribution of the reacting and diffusing species. Once you have obtained these coefficients

you can solve the reservation equations but in the case of CVD process obviously you need to

focus on the mass transfer mechanisms involved. 
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So if I look at the overall rate of deposition of a CVD film, the deposition flux it has that

convective component to it plus a diffusive component to it, right? Mass can be transported

by both convection and diffusion but there is also a third affect which is called Phoresis. So

there are actually 3 phenomena that govern the overall mass transport process. 

Now this is fairly obvious when we talk about convection, if rho V is the convective flux of

the fluid system as a whole. If you take this and multiply this by Omega i which is the mass

fraction of the ith species that gives you the convective flux of species i can also write this as

rho i times V, this V is the vector. So the convective flux as is associated with molecules that

are essentially following the motion of the fluid itself.



You know, they are just moving along with the carrier fluid but because the carrier fluid has

the velocity and a mass associated with it there is a convective flux of the depositing species

also and we just saw that the diffusive flux can be expressed as minus rho Di gradient in

Omega i,  so once you know the diffusivity of the diffusing species and you know it is a

gradient you can calculate the diffusive flux.

The new term is the Phoresis term so what do we mean by that? What is Phoresis and why

does it happen? And why is it important in CVD systems? Phoresis refers to the moment of

species under the effect of an applied force. So it is distinct and different from the convective

motion associated with the fluid flow itself. 
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For example if you have a flow of a fluid with a certain velocity V and let us say that it is

density is rho, rho times V gives you the convective flux and rho i times V gives you the

convective  flux  of  species  i  simply  associated  with  the  enforced  flow  of  the  fluid  but

supposing now I impose a temperature gradient across it. So this is T2 T1 where T2 is let say

much greater than T1 then what happens?

Or let say that I impose an electric field across it, right? Or a magnetic field, or a pressure

field, so I can on top of the basic flow situation I can impose various external fields and when

I do that, that field induces a motion as well and it is more akin to a convective motion rather

than a diffusive motion.



Another field that you can think of its just gravity, you know, in all our discussions of CVD

we have kind of neglected gravitational force but it is present and it can have an effect. So the

gravitational field itself induces a Phoretic affect, for example in a CVD reactor what would

be some of the dominant Phoretic fields? Certainly thermal because particularly in cold wall

reactor you know that the temperature gradient between the substrate and the walls of the

reactor can be in the range of hundreds of degrees.

So the thermal gradient we do need to account for, pressure is typically not usually varying I

mean the entire reactor will be set at a constant pressure, so there is no pressure involved

convection within the reactor, magnetic fields very rare I am not aware of too many CVD

reactors which use magnetic fields to drive the process. However electric fields are used

because it has been found that by applying an electric field you can actually... 

I  am  setting  up  an  electric  field  gradient  you  can  speed  up  a  CVD  process  and  so

electrophoresis  can  be  important  effect.  How  about  gravity?  Is  gravitational  field  an

important  parameter  in  CVD?  Typically  not  because  it  is  a  diffusion-based  process  and

gravity does not play a significant role in enhancing diffusion but when you start talking

about very heavy molecules that are diffusing in a very light gas gravity can also become a

parameter consider.

And then there is  something called Diffusiophoresis  which is  a  Phoresis  associated with

diffusion  because  as  diffusion  occurs  there  is  a  concentration  gradient  being  set  up  that

actually diffusion is conveying mass in one direction and according to the principle of mass

conservation there must be an equal and opposite flow in the opposite direction and that is

what we call Diffusiophoresis, it is also known as Stefan flow, so that is another parameter

that can influence your net deposition flux.

So what we will do in the next few classes is, really concentrate on this Phoretic phenomena,

what are the different types of fields that can be applied? And what are the velocities and

fluxes associated with these Phoretic fields and you have to essentially learn to superimpose. 
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So for example associated with each Phoretic field there will be velocity C, so just like you

have convective velocity V which induces a convective flux the Phoretic velocity C will

induce a Phoretic flux which will be, you know, just like we have written the convective flux

like this we would essentially write this as rho C times omega i or rho i times C as, so this is

the convective flux and this is the Phoretic flux and of course this is the diffusive flux.

So the challenge really becomes how do you estimate this Phoretic velocity C for various

fields? In some cases it is obvious in some cases it is not, so we will deal with that in a couple

of lectures because it is the correction factor for deposition flux which if you are not careful

and you neglect, you will not be able to estimate the deposition flux in a CVD reactor very

accurately and that can lead to very misleading conclusions about the design and operation of

your CVD reactor.

Okay, so we will stop at this stage, any questions? Okay, so I will see you at the next class.


