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Hello friends, welcome to lecture 8.5 on the in the unit on discrete wavelet transforms. 

Until now we have looked at the theoretical aspects of DWT, we have studied 

extensively the orthogonal DWT, and the properties of wavelets, how to compute the 

DWT. When we say DWT by default it is understood as orthogonal DWT, so how to 

decompose the signals into different scales or different frequency bands and how to 

reconstruct or synthesize, and studied certain key relations between the properties of the 

wavelets such as compact support, and vanishing moments, and so on.  

In this lecture what we are going to do is look at the practical aspects, both how to 

implement, in the sense how to compute the DWT in MATLAB, and study briefly on the 

boundary effects, remember DWT involves convolution like CWT. And any convolution 

operation is affected by the border effects; that is how the signal behaves at the borders; 

that is outside the observation interval. And we are going to primarily discuss 3 popular 

applications of DWT, namely the discontinuity detection; and more popular one such as 

signal compression and signal estimation. Again I will show you how to do things in 

MATLAB with the few illustrative examples. 

So, let us begin our journey. The first thing that we would like to do in MATLAB is to be 

able understand, to be able to generate wavelets which we have seen of course yesterday, 

but get the different wavelets or different filter coefficients and so on. I have already 

discussed that routine with you. We have going to primarily use the MATLABs wavelet 

tool box, and the routine that gets the wavelets for you or wavelet filters or wave fun and 

w filters. We have seen the usage of wave fun earlier.  
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So, suppose I want to generate a Haar wavelet, then again I use the wave fun and I want 

to have the scaling function, the wavelet and the values at which these are being 

computed. In the Haar case, remember that we have an explicit expression. We do not 

have to compute this scaling function or the wavelet from the filter coefficients. We 

know already that the scaling function is a box function, and the wavelet function is box 

with a reversal of the sign, half way through. 

So, the second argument here, as we have seen earlier, represents the number of 

iterations it takes to compute the wavelet from the filters for the Haar wavelet alone and 

a few other wavelet for which close form expression exits. This second argument is 

simply going to tell the wave fun as to how many points at which this scaling functions 

or the wavelets have to be generated.  

So, here, if I look at the length of 5 Haar, it is roughly, 2 power 8 plus 2. It does not give, 

normally for wavelets which have closed form expressions, the second argument in wave 

fun will generate the scaling function or the wavelet at 2 power that second argument. 

But here, the additional thing that is done is 2 power 8 plus the length of the filter. So, let 

us plot the scaling function for the Haar wavelet; it is a familiar figure for us.  
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So, this is how it look like; it is a box function. And we can also plot on the same figure 

the wavelet as well, because the scaling functions and the wavelets are returned as row 

vectors, we should force them as column vectors. And therefore, you can see now, the 

scaling function and the wavelet; scaling function shown in blue and the wavelet is 

shown in red. We can actually ask for a thicker line width to improve the visibility. 

Now, hopefully, you are able to see the scaling function and the wavelet. Very often one 

has difficulty in visualizing how these functions whether phi (t) or psi (t) look like when 

they are scaled and translated, either dilated or compressed. Normally, we are interested 

in the dilated versions because, as we have to learnt earlier, the signal is available at the 

finest time resolution, and we always end up constructing only approximations; an 

approximations are generated by the dilated versions.  
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So, assume that this scaling function or the wavelet that we have plot is available here at 

the same resolution as the signal, and we want to generate phi (t) by 2 or even phi (t) by 

2 minus 1. Then, let us first understand by hand how to generate these values. If I am 

given the phi (t) which here we know is the box function in the interval 0 to 1, which 

means it is understood to be 0 outside this interval, then I would like to construct phi (t) 

by 2. It is fairly easy.  

The first step is to have a dummy variable which is equal to t by 2. So, let us call this 

dummy variable as t prime. And now all I have to do is evaluate phi (t) prime, given this 

information. Note that this t is a dummy variable. It tells me essentially what is the 

values of phi at any value that t takes here. So, that is the, that is how you interpret the 

information. So, let us understand how to do this. I would like to evaluate phi (t) by 2. 

Let us call that as phi (t) prime.  

And my objective is to calculate what is phi (t) prime as a function of t given this 

information. So, what we shall do is we shall take values of t here, but instead track phi 

(t) prime, right. Because, eventually, I want to plot phi (t) by 2 versus t; that goal does 

not go away. So, when t is 0, of course t prime is 0. So, what we shall do is we shall have 

another row for t prime. And then a third row for phi (t) prime which is nothing but phi 

(t) by 2.  

So, when t is 0, t prime is 0. And let us pick another value here. When t is, let us say, half 



then t prime is 1 4. So, I know, phi of by, phi (t) prime therefore, when I am evaluating 

phi (t) prime at t prime equals to 0 I am asking what is phi at 0; phi at 0 by definition is 

1. And likewise, here phi at 1 fourth is 1, because at any value in this interval 0 to 1, phi 

assumes the value of 1, right. So, I have here; and then I pick 1 here for t, therefore, I get 

half; likewise, I get phi (t) prime to be 1, and so on.  

So, if I pick here 1.5, I have 0.75 for t prime, once again the value is 1. And when t is 2, t 

prime is 1, right. And then I have phi to be 1 at this point. As you can see, already phi (t) 

prime is a dilated version, why? Because, phi (t) is 1 in the interval 0 to 1, but phi (t) by 

2 is 1 in the interval 0 to 2. So, it is been already stretched. The moment I step out of this 

interval, 2.5, let us I say, 1.25 it goes to 0, and so on. So, even if I look at 3, therefore, 

remains 0.  

So, if I were to draw phi (t) prime this is how it would look like, this is if phi (t) looks 

like. And let us say, this is 1, and here is 1. So, this is how phi (t) looks like. Here the x 

axis is t; y axis is phi (t). Now I am going to draw phi (t) prime or phi (t) by 2. So, the x 

axis is still t, right; x axis is still t, but y axis is phi (t) by 2; and I have 0, 1, and then here 

2; this table here tells me that phi (t) by 2 is now a dilated version and goes to 0 after 

this; you see that. 

Now, I need to compute; remember, not only do I need to compute phi (t) by 2, I need to 

be able to compute integer translates of this. At any scale the approximations coefficients 

in theory are the inner products of the signal with the scaling functions at that scale and 

its translates. So, how does the phi (t) by 2 minus 1 look like? Obviously, we do not use 

this to compute the coefficients, we use the fast algorithm. But, you should be really 

comfortable in visualizing what phi, how phi (t) by 2 looks like, and how its integer 

translates look like.  

So, let us ask, what is phi (t) by 2 minus 1, the first translate, alright. So, now, let us call 

this as t prime. So, what we are going to do is we are going to erase these values here, 

and ask how phi (t) prime, now my t prime is no longer t by 2, but it is t by 2 minus 1, 

right. So, when t is 0, what is t prime? T prime is minus 1, alright. So, what is phi at 

minus 1? This information is the key; phi at minus 1 by definition here is 0 for the Haar 

scaling function, is 0.  

When t is half, I have 1 fourth minus 1. So, I have minus 0.75. And once again this is 0. 

When t is 1, I have minus, t prime is minus 0.5. So, phi (t) prime remains 0. When t is 



1.5, t prime is minus 0.25 and phi remains 0. When t is 2 then t prime is 1, and that the, t 

prime is 0 and that is when the phi (t) prime switches on, right. And when t is 2.5, I have 

here 0.25 and phi remains 1, and so on. So, the last value here at which it remains 1 is t 

equals 4 at which point t prime is 1. And beyond 4, t prime is greater than 1, as a result 

phi (t) prime is 0.  

So, how does the plot of phi (t) by 2 minus 1 look like? Just for convenient sake we shall 

draw here on the same plot; now we will use a different color to plot phi (t) by 2 minus 1. 

It says that, this table tells me that phi (t) by 2 minus 1 remains 0 until t takes on a value 

of 2, right. So, it is going to remain 0 here. And really, what is going to happen is, at this 

point phi (t) by 2 minus 1 takes a value of 1 and remains non 0 until 4; remains 1 until t 

takes a value of 4, and then it goes to 0 once again. 

So, now it is very clear that at any scale the integer translates of this scaling function are 

non over lapping. In fact, if you take the inner product of these 2, it will turn out to be 0, 

right. And you can repeat this exercise for yourself for the wavelet as well; the only 

difference is, the wavelet has the shape, as you can see on the board; so this is blue; we 

have the scaling function, and the wavelet look like this.  

In fact, different, the values are different as you can see. So, it actually goes this way, 

right. That is how the wavelet looks like. Once again you can write a table for psi (t) by 

2, and psi of, and all it is integer translates, and get an idea. Once you have done this for 

1 or 2 integer translates you get an idea of how they look like. But, the key point is that 

we can see the dilation clearly. In fact, phi (t) by 4 would extent until 4, and so on. So, 

this is the useful exercise to understand how these wavelets or scaling functions and the 

dilations and translations look like.  
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And now get back; and of course, you can use this wave fun to generate a number of 

wavelets. And if you want to know what wavelets are available, type wave info at the 

command prompt; and it will give you all the different classes of wavelets that have been 

coded in this tool box. Namely, they are something called crude wavelet; is actually 

nothing crude about this; they are essentially the complex or the real valued wavelets 

which do not have necessarily an admissibility constant or they do not have a scaling 

function in the sense of DWT.  

So, the family of wavelets that fall into this category are the Morlet wavelets, the 

Mexican hat. Actually Mexican hat wavelet has a scaling function. So, in some sense this 

is misleading; it tells you that is there is no scaling function, but there is a scaling 

function that is useful in CWT but not useful in DWT. The scaling function that comes 

out of a Mexican hat does not have the orthonormal property; that is the scaling function 

and its integer translates do not have the orthonormal property that are necessary for 

DWT. That is why it is said here that there is no scaling function, but that is not entirely 

true. 

And then you have infinitely regular wavelets; what this means is that there are a number 

of the vanishing movements are very high. And the properties of each of this family is 

given here. So, if you look at the meyer wavelets, these are the only regular wavelets 

which do not have a compact support necessarily. In fact, they do not have a compact 

support, but the scaling function that comes out of the meyer wavelet can be used for 



DWT.  

So, if you look at the properties here, phi exits and the analysis is orthogonal which 

means that the scaling function can be used for DWT. And the psi and phi are 

indefinitely derivable which means differentiable, and it should be, should understand 

that. It says that the psi and phi are not compactly supported. In fact, you can ask for the 

meyer function and understand why they do not have compact support. We have seen the 

meyer wavelet before. But, just for own confirmation let us actually ask for the meyer 

wavelet. 

Unfortunately, the string that you are supposed to pass on to wave fun is not consistent to 

the name of the wavelet. So, the correct string that has to be that is acceptable is m e y r 

for whatever reason. So, let us plot the meyer wavelet. 
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So, this is how the scaling function; the one that is shown in blue is a scaling function, 

the one that is shown in the red is the wavelet function, both belonging to the meyer 

family. It is clear now why the scaling functions or the wavelet functions from the meyer 

family do not have a compact support because they only died on exponentially. 

Consequently, the filter coefficients associated with this are not going to be of finite 

length; that means, they are not fir filters. 

Now, what does it mean? Well, it means that in DWT you may not get all the nice 

computational efficiency and so on, and that the phi (t), of course has a large number of 



vanishing moments and so on. So, if you go back to the properties of wavelets, here it is 

says, for meyer wavelets the filters, the discrete transforms is exits, but you have to use 

non fir filters. However, they are symmetric as you have seen from the scaling function. 

You can see here that the scaling function is symmetric, unlike the Daubechies wavelet 

or unlike the Daubechi scaling function. 

Then come the family of the orthogonal compactly supported wavelets. So, you see, as I 

said in the previous lecture, until Daubechi came up with her result it was somehow 

believed that there exists no compactly supported wavelet that could be orthogonal, 

except for the Haar wavelet but that is discontinuous. So, people were in need of an 

orthogonal compactly supported continuous wavelet, and that was the great contribution 

by Daubechi.  

In showing that one can design such a wavelet. And in this family, once the Daubechi 

wavelet was discovered and designed, the symlets and coiflets that we discussed in the 

previous lecture also came up. And we have already studied the properties of this 

wavelets, and likewise. So, go through each of this family and you will get the 

information.  

So, now, let us get to business here, and look at how DWT is computed using one of 

these wavelets. So, for this what we shall do is we shall take the signal that we had used 

in one of our lectures, lecture 8.3, where I showed you the DWT of a piece wise regular 

polynomial from Mallat’s books. And let us generate 256 observations of this signal. Let 

us makes sure that this is the signal indeed that we want to analyze. So, this how it is, 

that is it looks right.  

Now, I would like to perform DWT of this. Of course, we can do a CWT, if you want to 

detect discontinuities and so on. So, suppose I want to perform a DWT, and maybe I 

want to perform signal compression, let us say, right, I want to compress this. I can 

perform a 1 level DWT or 2 level DWT and so on. The basic command here that 

performs a 1 level DWT is the DWT command itself. It performs only a single level 

discrete wavelet transform.  

So, if you have a signal and you want to perform a 1 level DWT, or if you have 

approximation and detail coefficients at one level and you want go to the next level and 

so on, this DWT routine is useful. So, let us just, let me just show you the usage of this 

routine. What we shall do is we shall say c a, c d; essentially, c a, c d are my 



approximation and detail coefficients of a 1 level DWT that I am going to perform on the 

signal. And let us use a Haar wavelet, I can use a Daubechi and so on, we will do that a 

bit later.  

So, now, I have the approximation coefficients, detail coefficients from the Haar wavelet 

decomposition, one level Haar wavelet decomposition. It is always convenient to plot the 

signal and the coefficients. In this case, I have a signal and I have 2 sets of coefficients 

because I performed 1 level DWT. Therefore, I will plot the signal here and ok; we have 

plotted the signal. And next comes the approximation coefficients. In this case, it is 

always useful to plot the approximation coefficients as a stem plot.  

Typically, stem plot is the best way to plot. And also, make sure that you keep the time 

index intact. If you just ask for a stem plot, the stem plot would plot approximation 

coefficient verses their index, but what we want to show here is that the resolution of the 

approximation coefficients in time has fallen down by factor of 2. So, what we shall do 

is, let us say, n is the length of the signal; and then we shall plot 0 to n minus 1 or you 

can say 1 to n, whichever way you want it to be.  

So, let us take it from 1 to n for convenience, and plot c a; and let us plot them in red. So, 

this is how, and then you shall. So, this is how the approximation coefficients look like. I 

will show you the plot maximum mode, maximized mode once I finish plotting the detail 

coefficients. 
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So, now stem c d, let us plot it in green. And the rest of the story is the same; next site 

and then maximize this. So, what do I have here? I have the signal on the top and then 

have the approximation coefficients here and the detail coefficient. So, something 

interesting emerges here. This is a level decomposition indeed. Now, if you look at a 

signal there are discontinuity locations at these points here.  

So, let us pick 1 discontinuity location here. I have a discontinuity location around this 

point. And correspondingly, in the detail coefficients I see a spike, right, and that is true 

for other discontinuities as well. Of course, you should notice, the first thing that you 

should notice is that the resolution of the approximation coefficients in time has fallen 

down by factor of 2. I have plotted the signal as a continuous plot; ideally, I should have 

plotted the signal also as stem a plot, is a discrete signal. But, anyway, we know the time 

sampling interval for the signal. So, here I have sampling interval fallen by, multiplied by 

factor of 2.  

So, coming back to the point; where ever there are these sharp changes in the signal, 

particularly of these types, I notice that there are spikes. It is not that I will have spike in 

these detail coefficients, at all points of changes; and that is the most important thing. In 

CWT also we have seen this. We have said that the sharp discontinuities or the 

singularity points will have a specific signature; what is that signature? That you will see 

spike in all the frequency bands.  

So, if I look at the detail coefficients here, they are in the frequency band, omega max 

over 2 to omega max; omega max is an frequency of the signal. And approximation is 

corresponding to the low frequency band, 0 to omega max by 2. So, not all sharp changes 

here belong to the high frequency band. In fact, to be able to say that a point in the signal 

is the singularity or not, this spikes for those points should occur across many frequency 

bands.  

Here we have performed only one level decomposition. But if I perform, let us say 3 

level decomposition, then I will be able to see those spikes coming in. So, DWT has a 

different signature here as compared to CWT for some singularities. Now, suppose I 

want to perform a 3 level decomposition, how do I do it? 


