
Introduction to Time-Frequency Analysis and Wavelet Transforms 

Prof. Arun K. Tangirala 

Department of Chemical Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 8.4 

Wavelets for DWT 

So, I have written a script here that performs the iterative algorithm that I just outline. 

(Refer Slide Time: 00:17) 

 

The script here… The script is shown here and you should be able to get the script from 

the web. When we post the lecture notes, we will also post the script. So, let me run the 

script and show you how the iterative algorithm works. 



(Refer Slide Time: 00:48) 

 

So, what I am doing here is, I am actually using wave lab to get the low-pass filter 

coefficients. I can use the wavelet tool box as well, does not matter. And, what I am 

interested in here is generating the Daubechies wavelet of vanishing moments too. In 

fact, if you look at the line here, it says that… It is asking for the filter coefficients 

corresponding to Daubechies family with the number 4 here. This number is not the 

vanishing moment, but the length of the filter. That is why I said there are conventions 

where people use the length as the specification or half the length which is a vanishing 

moment as a specification. Here in wavelab, the MakeONFilter; ON means orthonormal. 

That routine requires you to specify the length rather than the vanishing moments. So, I 

am asking for the filter coefficients here. And, I am interested in generating the phi of t 

corresponding to this db2. And, the accuracy of phi of t depends on how many times you 

run through that algorithm that we just discussed. 

How do we initialize the phi of t? One thing I know for sure that, phi of t cannot have a 

zero average because it is a low-pass filter. So, what I am going to do is I am going to 

initialize the phi of t as a bunch of 1’s – just a vector of 1’s. In fact, ideally, I should be 

initializing such that it is not 1’s, but 1 over n – 1 over 4, so that the sum of it. In fact, the 

area under that of phi of t should come out to be 1 and so on. But, we will not do that; 

that normalization we will do later on. So, as you can see here, my initial guess is that, 



phi of t is taking on a value of one over a certain interval. So, this is how the initial one 

looks like. 

(Refer Slide Time: 03:08) 

 

Let me show you the initial Daubechies wavelet – initial guess of the Daubechies 

wavelet, is just a plane straight line; that is it. Obviously, I know this is not db 2. But, the 

iterative algorithm magically constructs the db 2. Let us quickly see how it looks like. 

When I run through the iterations, I will take you… Let me run this here and then I will 

take you through the animation. 



(Refer Slide Time: 03:40) 

 

So, suppose I run it for about 9 iterations, what I have with me here are the Daubechies 

scaling function. Look at how it magically constructed the Daubechies wavelet from a 

guess. But, that guess is very important; you have to give a guess that make sense. You 

cannot give a guess such that it has a zero average; that is all. So, as long as you give a 

phi of t that has non-zero average, it should work fine. And, of course, here what you see 

on the x-axis; it says time. But, it is not time really; it is a number of iterate points over 

which I have computed iteratively. I started off with four points; but, with every iteration, 

it is doubled; the number of points is doubled. The time interval over which it exists is 

actually 0 to 3. Why? Because db 2 has four filter coefficients. Therefore, its support is 

over n 1 comma n 2; 0; n 1 is 0; n 2 is 3; that is, I have four filter coefficients at n equals 

0, 1, 2, 3. 



(Refer Slide Time: 04:54) 

 

And, what are those filter coefficients? Those filter coefficients are here. You can also 

obtain these filter coefficients from matlab’s wavelet tool box. There are four filter 

coefficients at n equal to 0, 1, 2, 3. So, the support of h is over 0 comma 3. By the result 

that we are seen earlier, support of phi is also over 0 comma 3. What you see as a plot 

here is actually over 0 comma 3. So, the time… This is only the number of points from 0 

to 3. All right. 



(Refer Slide Time: 05:29) 

 

And, the associated wavelet has also been constructed. The moment I have the scaling 

function, I can also run the same algorithm by starting off with the guess for the wavelet. 

And, this is how the wavelet is built. 

(Refer Slide Time: 05:48) 

 

So, if you look at the code, the way I have written is… This is the wavelet function. And, 



all I do is… Remember the wavelet at any stage is a convolution of g with the scaling 

function, because that is from the scaling relation. The psi of t is integral g of n phi of t 

minus n; sigma g of n phi of t minus n; that is it. So, I use that convolution expression 

and compute the wavelet. I do not have to run another iterative algorithm at all. All I 

need to do is generate phi of t and I will get phi of t. So, I hope you understand what is 

being done here. Essentially, this is a scaling relation that we have seen earlier. 

(Refer Slide Time: 07:01) 

 

So, let me also show you just to make the thing very effective; that is, for you to see 

gradual guess – refinement of phi of t across the iterations, I am going to take you to 

another presentation that I have from previous workshop; where, this is the initial guess. 

Second guess – this is the development in fact after three iterations. And then, gradually, 

it develops fourth iteration, fifth iteration, sixth, seventh, eighth; that is it. So, then, you 

have a wavelet. So, that is called… That is the iterative algorithm. 



(Refer Slide Time: 07:34) 

 

Now, as I said earlier, there is also a second algorithm. 

(Refer Slide Time: 07:37) 

 

That is known a cascade the algorithm, which has a very beautiful thing to it. It is a very 

nice way of reconstructing phi of t; it is very elegant. This algorithm works backwards 

using the reconstruction equation and the following fact. Now, remember that, in the 



MRA, what I am doing is I am constructing approximations of signals that are of finite 

energy. What I do here is I set the signal as a scaling function itself. Why not? See even a 

scaling function is some signal. Now, when I set the signal as a scaling function itself, 

then I know by the orthonormality property that, the inner product between the scaling 

function and the scaled scaling function is one. Here I am right now I am looking at scale 

1, that is, at m equals 0. As you can see from the subscript here; and, p here refers to the 

translate. So, the inner product between phi of t, which is the scaling function – the 

continuous one and the phi of 0 comma p, that is, its own translate in other words. So, it 

is other way of saying that, the phi of t is orthonormal; that is all I am using. That is a 

property that I am using. But, I am rewriting it as an inner product. 

And, I also used the property that, the phi and psi are orthonormal at any scale. And, here 

I am choosing zero scale. But, if you look at this result from an approximation 

coefficient view point; now, think carefully; I start from the signal, which is phi of t and I 

start projecting it onto different subspaces v 0 or v minus 1 or v minus 2 and so on. 

Ideally, where does phi of t live? phi of t lives in the finest scale; it lives at v minus 

infinity; phi of t lives in v minus infinity; that is, when m goes to infinity, that is where 

phi of t is residing. You can project this phi of t onto any of the subspaces. Let me just 

show that to you on the graph. 

(Refer Slide Time: 09:59) 

 



So, what is happening here is as I go here, I get v minus infinity, which is corresponding 

to m equals infinity. So, when I have phi of t… phi of t resides in this space really; v of 

minus infinity is actually the finest scale. I can project that let us say to v 0, which will 

construct some approximation, because v 0 – what is it spanned by? v 0 is spanned by 

phi of t minus n; and, n belonging to the interior side. And, what that result says is 

whenever I project phi of t onto v naught, there is only going to be one approximation 

coefficient that is unity and all the other approximation coefficients are going to be 0. So, 

imagine instead of assuming v minus infinity, I have phi of t at a very fine scale. Let us 

say at very very fine scale, maybe m equals... In fact, this is not m equals minus infinity; 

m is minus infinity. So, let us say I have over very fine scale, m equals minus 1000. What 

does m equals minus 1000 mean? A very fine scale over a very fine grid. So, phi of t is 

also known over a very fine grid. So, we will just relax that it is continuous; rather 

imagine that, phi of t is now known over an extremely fine grid. 

When I come from an extremely fine grid to v 0, what I would have generated is a bunch 

of approximation coefficient; it is like taking any signal and I decompose any signal to 

some level; I have a number of coefficients. That signal is also sampled signal. The 

number of approximation coefficients of course will be much lesser than the original 

signal. So, here also what I am doing is I am taking phi of t known at some very fine 

grid. Let us say t naught and then t naught plus delta t; phi at t naught 2 delta t and so on. 

So, a very fine grid and projecting it. Here I have a bunch of approximation coefficients. 

Those approximation coefficients will be of certain length. And, what that result says is 

when I feed; when I perform a decomposition of phi of t to a level 0 let us say; then, 

what happens? I have a bunch of approximation coefficients, which look like 1; and, rest 

of them are all 0’s. The length of this of course, is determined by what length you are 

looking at. 

In fact, if you have some n grid points here… Let me not confused with this m here. Let 

us say I have s grid points here. Then, by the time I come to 0, the number of coefficients 

here would be s over 2 power m – 2 power 1000 if that is at 1000. But, that does not 

matter. Essentially, this phi is known at some very fine scale over a grid and I have 

subjected that to an approximation or a decomposition, where this result says you start 

from the finest scale and perform a decomposition; you will always end up with these set 



of approximation coefficients. And also, the detailed coefficients at this scale would be 

all 0’s because the phi is orthonormal to the wavelet; which means the low-pass filter is 

orthonormal to the high-pass filter. Therefore, there are no high frequency coefficients at 

all. 

Now, I do not know what is that phi of t; but I know for sure that, any phi of t associated 

with the low-pass filter will produce this approximation and detailed coefficient at level 

0. Now, I reconstruct. So, I would like to go from v 0 to v minus 1. So, this here is the 

projection of phi of t onto a naught. I am going to now reconstruct a minus 1. I can do 

that; I have the reconstruction algorithm. So, I am going to run a naught through the 

reconstruction algorithm repeatedly as many times as I want to get phi of t. That is a 

basic idea behind the cascade algorithm; it is very simple one. But, you… And, uses the 

orthonormality property. So, what you do is you choose the associated low-pass filter 

whatever… For whatever family you want to construct the scaling function, start the 

low-pass filter, because it is all about constructing phi of t from the low-pass filter an 

then get your… Set initialize your guess for the… Not guess, initialize your 

approximation coefficients at level 0. Does not have to be level 0; but, just for discussion 

sake, we say it is level 0. 

And then, set all the details to 0 and apply the reconstruction algorithm repeatedly. And, 

how do you do that? There is a command called up c o e f in wavelet tool box of matlab, 

which will allow you to reconstruct repeatedly either from the approximation coefficients 

or the detailed coefficients. And then, you will be able to reconstruct it at any level. All 

right? That is nothing but the reconstruction algorithm with all the other band 

coefficients set to 0; that is all; it is nothing very great about it. In fact, this algorithm 

now can be applied to the wavelet also. For the wavelet, what happens is… The property 

of the wavelet is such that the detailed coefficients… If you were to feed not the scaling 

function as a signal; but, if you were to feed the wavelet as a signal, what kind of 

approximation and detailed coefficients would you get? You would get the reverse 

situation. So, I start from psi of t. That is what I would feed and then perform the 

decomposition many many many times. Then, when I come to a very coarse scale, what I 

would have is all zero approximation coefficients, because a wavelet has nothing in the 

low frequency band. And, the detailed coefficients would be 1 at lag 0; that is, at time 0 



and 0 elsewhere, because of the orthonormality property of the psi; and, that is it. So, I 

can also apply this to generate the wavelet. And, this is exactly the algorithm that is 

implemented in the wavefun. 

(Refer Slide Time: 17:20) 

 

So, remember; we use this wavefun long ago in the CWT – lecture 7.2. When we talked 

about scaled frequency, we started with a specification of the low-pass and high-pass 

filters for the Daubechies. And then, we said… We specified the number of iterations to 

generate the scaling function and the wavelet. And, that is exactly what the wavefun 

does. 



(Refer Slide Time: 17:45) 

 

So, let me do that; phi db; you can see here I am going to 12 or even 9 iterations; does 

not matter. And, that gets me the db 2. In fact, if you open up wavefun, you will see that, 

it is exactly implementing the algorithm that we just discussed. 

(Refer Slide Time: 18:12) 

 

If you throw away all of this, what it does is here. Here it gets a filter coefficients and the 



up c o e f is a key. To generate the scaling function, it uses an approximation coefficients. 

And, what are the approximation coefficients? If you go up, you will see… In fact, here 

itself, it says, the approximation coefficient is simply a single coefficient of value 1; that 

is, you have started from phi of t and you have decomposed it to such a level that, only a 

single coefficient is available; and, that single coefficient value is 1. Given any signal, I 

can perform the maximum decomposition such that I only have one coefficient left. And, 

if I… What the previous discussion tells us is if I start from the scaling function itself, 

that is, a decomposition scaling function itself, there will come a level at which there is a 

single approximation coefficient. And, that is the value of 1. Likewise, if I start from the 

wavelet and I perform the decomposition, then I can reach a level at which there is a 

single detailed coefficient; and, that is the value 1. So, the up c o e f performs a repeated 

reconstruction; that is at the core of wavefun. So, let us plot here. 

(Refer Slide Time: 19:46) 

 

So, as you can see, this is this scaling function now over the interval 0 to 3. As you can 

see, it is over 0 to 3 because that is the effective support. And, the result of course, looks 

identical at least in shape to what we had with the previous algorithm. And, if I look at 

the wavelet, this is how you iteratively generate the scaling functions and wavelets 

starting from filters. 



Now, what we shall do in the next matlab session – the fresh matlab session is I am going 

to show you how to compute the wavelet transforms and how one can perform signal 

compression and how one can perform signal estimation and all of that. Primarily, it will 

be a matlab session; and, I will give you a brief theory of signal estimation. The basic 

idea and signal estimation has already been discussed. You decompose the signal and 

then you apply some criterion like we did on the CWT and the short-time fourier 

spectrogram and so on. You apply a criterion on the coefficients at all the scales or at 

some scales and so on. We call this as thresholding; that is, you throw away certain 

coefficients or you retain and so on, and then reconstruct. So, the basic idea is transform, 

perform some operation in the transformed domain, and then reconstruct. That operation 

in wavelet domain is nothing but thresholding. So, there are several flavors of 

thresholding and of this of this basic idea, which we will discuss in the next matlab 

session. So, it will be more practice-oriented and a bit of theory on signal estimation. 

That would be the final lecture on this topic of discrete wavelet transforms. 

There are of course, other applications of dwt such as discontinuity detection. I will also 

briefly illustrate the idea of discontinuity detection in DWT; and, how choosing wavelets 

with higher vanishing moments – different vanishing moments makes a difference in 

discontinuity detection. So, what we are going to do is look at how to perform 

decomposition and reconstruction, detect discontinuity briefly, and then a spend lot more 

time on signal estimation, discuss the different thresholing methods. And, with that, we 

will conclude the topic of the discrete wavelet transforms. And finally, we will have a 

closing session, that is, a closing lecture for the entire course. Hopefully, you enjoyed 

this lecture and learnt quite a bit. And, see you in next matlab session. 

 


