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So, let us now return to the classical DWT. We are going to primarily restrict ourselves to 

the orthogonal DWT. As long as we understand how orthogonal DWTs work, the theory 

is more or less the same with when it comes to properties of the wavelets. The properties, 

that we are discussing here, of course are independent of any wavelet that we use. The 

property is namely, compact support vanishing moments, and therefore regularity of 

wavelet and symmetry. These three are independent, whether you are going to look at 

orthogonal wavelets or not, that does not matter, but what matters is how the compact 

support and the vanishing moments are tied together for orthogonal wavelets, whereas 

for biorthogonal wavelets, they are not tied together. This is what I was mentioning 

earlier, that when I want the wavelet to have certain vanishing moments, there is also a 

certain restriction on the width of the wavelet for orthogonal wavelet. So, let us look at 

this in detail. 



So, the first property of wavelet in general is compact support. And what we mean by 

compact support? It is a, it is a technical term for the width of the signal, how effect, how 

long the scaling function or the wavelet is active or non-zero, right. Obviously, we want 

it to be as minimal as possible so that we can capture the local features of the signal in 

time very effectively and this effect, that is, the width of the scaling function and the 

wavelet essentially determines the ability to represent the signal compactly, that is, with 

as few number of coefficients as possible. 

Now, there are a number of wavelets, that have compact support and there are a number 

of wavelets that do not have non, that do not have compact support. What do we mean by 

do not have compact support? That is, they do not die down in finite time. So, what are 

those examples here? In under orthogonal wavelets you have the daubechies wavelets of 

different vanishing moment, dbN, Haar wavelet, of course it is a special case of the 

daubechies, Symmlets and Coiflets. Whereas, for biorthogonal wavelets you have the B-

spline wavelets, that have compact support. Among orthogonal wavelets, that do not 

have a compact support are the Meyer wavelets, which die down only exponentially and 

so are Battle-Lemarie wavelet and so on. So, that is the main, one of the fundamental 

properties. The compact support plays a big role in the choice of wavelet. 

The second property that plays a role in choosing the wavelet is the vanishing moments. 

We have discussed this at length in CWT. We have discussed its effect on the regularity 

of the signal. Higher the vanishing moments, more smooth or regular is the signal. And 

the vanishing moments property of the signal determines the, sorry, vanishing moments 

properties of the wavelet determines the ability of the wavelet to detect the discontinue, 

discontinuity in the signal and its derivatives. 

A wavelet with smaller number of vanishing moments, like the Haar wavelet has one 

vanishing moment. It is able to detect the discontinuity in the signal, whereas daubechies 

wavelets of higher order, higher number of vanishing moments are good at detecting 

discontinuities in the signal derivatives, and we will see examples of this in the 

MATLAB session. Qualitatively what we can understand is, that the vanishing moments 

determine the ability to detect discontinuity signal and their derivatives. In CWT, it is got 

to do with regularity measurements also. 



Thirdly, it is a symmetry property that is of interest, as I had described earlier, the 

symmetry of the wavelet controls the phase distortion of the signal. Now, when I say 

wavelet, it is also with respect to the scaling function as well. And as I mentioned earlier, 

there are many applications in which I do not want phase of the signal to the distorted. 

Which signal are we talking about the filtered signal. Remember, I decompose a signal 

and then from the decomposed coefficients, I filter, I, I reconstruct the particular 

component of the signal, that is nothing but your filtered signal. 

I do not want the sharp changes in the signal to be lost, for example, because they may 

carry some vital information. And if I want to really preserve that as much as possible, 

then I should not have asymmetric wave, I should not be using asymmetric wavelets 

because they lead to phase distortions. Now, these are qualitative measures. It is very 

hard, of course, vanishing moments has a number associated with it. Compact support 

also has number associated with it, which is the width of the wavelet or the filters, but 

there exist more quantitative measures, that allow you to select a particular wavelet for a 

given application. And these quantitative, quantitative measures are based on ((Refer 

Time: 05:40)) entropy ((Refer Time: 05:42)) convex functions and so on. 

To discuss these quantitative measures is outside the scope of this course, but I 

recommend that you refer to this book by ((Refer Time: 05:55)). It is a fantastic book, 

which talks about this, in particular chapter 10, which discusses in detail the measures 

themselves and how these measures are calculated and certain applications. So, you will 

find this book very enlightening in that respect. 



(Refer Slide Time: 06:15) 

 

So, let us now talk about some general guidelines. Again, these are based on the 

properties that we just studied. In most, if you look at the applications of the wavelets, 

most of them are for signal compression and noise removal, that is, signal de-noising and 

what do they require. They require, that the wavelet basis and of course, the scaling 

functions basis represent the signal in as few coefficients as possible, that is, the scaling 

function should be able to capture the trend in as few coefficients. And the wavelet 

coefficients should be able to capture the abruptly changing features or the high 

frequency features in as few coefficients as possible. 

With respect to that what we would like have is a wavelet, that has small compact 

support that is of very narrow width like the Haar wavelet and may be few vanishing 

moments. And how well we can actually succeed in representing the signal compactly 

also depends on the regularity of the signal itself, how smooth the signal is and so on. 

But that is not typically in our hands. The signal is given to us and then we have to 

choose a wavelet. So, we are talking about the wavelet itself. 
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Just to recap what the vanishing moment property is, I have given you the definition in 6. 

It is nothing but integral t power n psi of t dt, that is some moment and these, this 

moment should vanish for n equal 0 to p minus 1. And then we say, that wavelet has p 

vanishing moments because we have realized, that talking about scaling functions or 

wavelets is as good as talking about filters. One can actually translate this requirement of 

a wavelet to have p vanishing moments to that of the, to a constraint on the low pass 

filter itself. At least for orthogonal wavelets we can do that. 

Remember, in DWT first we begin with the low pass filter, you construct phi of t and 

then from the low pass filter you construct the high pas filter and then we construct your 

psi of t. So, all the properties of the scaling function and wavelets are actually derived 

from the low pass filter itself. Therefore, it is natural, that we can rewrite this vanishing 

moments condition in 6. 

In terms of constraints on the low pass filter what is constraint? The constraint is, that the 

Fourier transform of the low pass filters impulse response sequence, that is, a frequency 

response function of the low pass filter and its first p minus 1 derivatives are 0 at omega 

equals pi. I am avoiding proof of this. A proof of this is given in many text books, but 

what you should take with you is every required constraint, that you place any constrain 



that you place on scaling functions or wavelets can be translated to constraint on the 

filters and that becomes important in the wavelet design as we shall see shortly. 

Now, the most important result that we shall also study later on due to the daubechies is 

that this vanishing moments property is tied to the compact support. In general, the 

vanishing moments property and the compact support, that is, the width of the wavelet 

and the vanishing moment property are independent of each other, but for orthogonal 

wavelets alone the width of the wavelet is tied to the vanishing moments. If I want, what 

this statement means is, if I want higher vanishing moments, I want, I, I need to have a 

wavelet that is wider and I, I have also talked about this even in the context of CWT, 

right. But this is true only for orthogonal wavelets. Biorthogonal wavelets are not really 

bound by this requirement. 

And since we use orthogonal wavelets frequently, this statement is very important if I 

want to use a very smooth wavelet. What does it mean, smoothness has got to do with 

high vanishing moments? So, very smooth wavelet will have high number of vanishing 

moments and as a consequence of this statement, here it will also be wide. If I want a 

discontinuous wavelet, then I can offer to have a narrow wavelet and that is what is a 

Haar wavelet. Haar wavelet is a discontinuous wavelet. It has only one vanishing 

moment and in fact, it is the shortest or the narrowest wavelet that you can design, 

orthogonal wavelet that you can design. 
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So, some more details on the compact support technical details, which is very important. 

So, if I remember, why, why the purpose of this discussion is to be able to select a 

wavelet based on a compact support vanishing moments property and of course, the 

symmetry property. When you are looking at orthogonal wavelets, symmetry has to be 

sacrificed somewhat. But if you want symmetry, then you turn to biorthogonal wavelet, 

but the key properties are the vanishing moments and the compact support. 

And compact support if I want to design is scaling function that has a certain width, then 

what results do we have in the literature? The first result is, the scaling function has a 

compact support, if one, if and only if the filter has a compact support. So, once again 

this establishes a connection between the scaling function, and the low, and the low pass 

filter. Remember, we have said this repeatedly, any constraint on the scaling function or 

the wavelet can be translated to constraints on the respective filters. 

So, I want a compact support for phi of t. I want it to die down in finite time, like the 

daubechies scaling function, that I have, or the Haar scaling function, that I have, which 

dies down. The Haar scaling function is simply a box, it dies down in finite time. What 

does it mean on the filters? The filters should also be finite length that means, they 

should be finite impulse response filters. That is why, the daubechies filters and the Haar 



filters are fir filters. In fact, if you just recall, we saw the Haar filter, the coefficients are 

1 over root 2 1 over root 2, the length is 2, right, which is finite. 

And the second result says, if the impulse response has a support, what we mean by 

support is the duration over which the impulse response is non-zero. If the support of the 

h is (n 1, n 2), then of course, phi will also have the same support. That is what exactly 

the first result is saying. 

First result is saying two things, if I want the scaling function to have compact support, 

then the filter should also have a compact support. And then it says, secondly, that 

whatever is a width of my filter will be the width of the scaling function, alright. If my 

filter goes from, has only two coefficients, then the scaling function associated will run 

from 0, will only exist in the interval 0 to 1. So, let me just show that to you on the, for 

the Haar scaling function. 
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So, how does the Haar scaling function look like? It is a box function over the interval 0 

to 1. And because we normalize the scaling function to have unit energy, it has value of 1 

here. And if you look at the Haar impulse response coefficients, that is, the low pass filter 

impulse response quotient. This is a continuous function, this is a discreet sequence. If 



you were to plot h of n, well, typically n start from 0 here and goes up to 1. So, I have 1 

over root 2, this is one impulse response. And the next impulse response is 1 over root 2. 

So, the support of h of n is over 0, 1 and phi of t is also having support in 0, 1. The only 

difference is, that h of n is a discrete sequence, is a sequence and this is a continuous 

value function. 

Now, what this results says is, that if phi has a support in n 1, n 2 and so does h, then the 

wavelet has a support over n 2 minus n 1 and is centered at half, that is, if I were to draw 

the associated wavelet for this, that is a Haar wavelet, then this is, this is how the Haar 

wavelet would look like, 0, 1. So, the support of the wavelet, I just drew to make sure, 

that these widths are identical at least qualitatively. The support of wavelet is over 0, 1 

and centered at half. If you look at the results say, so this is exactly it reaches to the 

negative axis in the y-direction at 0.5 and this is true for any, any fir file, alright. 

And you should ask yourself, why is this result important. Well, it is important because it 

tells me how to design a wavelet when I want it to have certain compact support. So, I 

cannot really arbitrarily choose a low pass filter and also arbitrarily design a wavelet, 

which has a compact support. The moment I choose a low pass filter, everything is fixed; 

the compact support is fixed, the vanishing moments are fixed. Everything is related to 

the low pass filter as far as orthogonal wavelets are concerned. 

And biorthogonal wavelets, you have more freedom. You can choose your low pass and 

high pass filters independently, but then the synthesis filters are, or you can say low pass 

and the synthesis filters are, because the synthesizing low pass filter and the analyzing 

high pass filter are tied together and the synthesizing low high pass filter and the 

analyzing low pass filter are tied together, so you have some freedom there. In 

orthogonal wavelets you do not have much freedom. The only freedom that you have is 

the low pass filter. And these results help me understand how the properties of the 

scaling function and the wavelets used in orthogonal DWT are dependent on the 

properties of the low pass filter. So, I have to choose my low pass filter carefully. 

And the very famous result in Daubechies, which was kind of ground breaking result in 

the design of compact support orthogonal filters until this result came about, until 



Daubechies really worked out the this associated theory, the only known orthogonal 

wavelet that had compact support was the Haar wavelet. However, it was discontinuous. 

The Daubechies essentially established and showed how you could design continuous 

phi of t that is, scaling functions, that are still orthogonal and that have compact support. 

So, what does the result say? It says, for orthogonal wavelet with p vanishing moments, 

the associated conjugate mirror filter, that is, a low pass filter has at least 2 p non-zero 

coefficients. Now, this result established the connection between the vanishing moments 

and the compact support only for orthogonal wavelets. Again, for biorthogonal wavelets 

this is not true. So, this once again tells me, that the moment I choose a low pass filter of 

a certain width, then the number of vanishing moments is also decided. So, for the Haar 

scaling function, once again, what is the number of non-zero coefficients that I have? I 

have 2 non-zero coefficients, that means, it will have 1 vanishing moment, right. 

Now, you understand the dbn, that n is a number of vanishing moments, the length of the 

filter is 2 n that is the general convention. But there is also another convention where n 

means a filter length itself. Therefore, half of that would be the number of vanishing 

moments. We have been following the convention, that when we say dbn, then n refers to 

actually p naught, the number of filter coefficient. So, if there is a confusion, then you 

should sort it out. 

And this result says, at least 2 p non-zero coefficient, that is, the moment you say I want 

a wavelet with, that is, say 2 vanishing moments, what does 2 vanishing moments mean? 

My wavelet should be able to detect the discontinuity in the signals derivative, right. 

Haar wavelet detects a discontinuity in the signal itself because it has 1 vanishing 

moment. There are 2 vanishing moments, then the wavelet can detect discontinuity in the 

signals derivative. So, I want such a wavelet, let us say, for some application. 

Then Daubechies result says, you have to choose a filter that is at least 4 coefficients 

long at least. Meaning, you can choose any other filter, filter, which has more number of 

coefficients, but not less than 4. And daubechies showed how you could design such 

minimum width, minimum compact support for a given set of number of vanishing 

moments that is the specialty of daubechies wavelets. They are continuous, they are 



orthogonal and they have minimum support, that is, minimum width for a given number 

of vanishing moments. That is why, they are used very widely. 
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So, let us just briefly go through a few popular orthogonal mother waves or as they are 

known as base wavelets. The first one is a Haar wavelet. We have discussed, we have 

been discussing this quite extensively and as I mentioned, it is orthogonal. It is only 

known symmetric orthogonal, which has a smallest compact support. All the other 

orthogonal continuous wavelet are asymmetric, as you see in item number 2 on 

daubechies wavelets. The only drawback if you say about Haar wavelets is, that it is, it is 

discontinonus, but then if you want to call it as drawback, it is drawback, but it is very 

usefully in detecting discontinuities. So, it is very good. 

Whereas, when you come to the daubechies wavelets, of course, they are orthogonal, but 

they are asymmetric, which means, they result in phase distortions and they have a 

minimum compact support, as I said, for a given number of vanishing moments. And the 

3rd point is something that we have discussed and 4th as well, as the number of 

vanishing moments increases, wavelets becomes smoother and wider. 

Now, after daubechies design Haar wavelets, there was also request to design daubechies 



like wavelets, which are near symmetric and has the same number of vanishing 

moments, but with an additional requirement, that the scaling function should also have 

certain vanishing moments. Normally, until know we have been talking about vanishing 

moments only on the wavelets, which tells me how the wavelet is capable of detecting a 

discontinuity in the signal and its derivatives. Now, we are talking about a scaling 

function being, having p vanishing moments and there are some applications where that 

is useful. 

Then Coifman devised these functions or low pass filters that satisfy the additional 

requirement, that the scaling function has n vanishing moments. But it turns out, that it 

has a much larger number size, not much larger, but definitely significantly larger size 

related to daubechies. See, with the daubechies wavelet if I want n vanishing moments, 

its width is 2 n minus 1. Whereas, with coiflets if I want to have n vanishing moments for 

the wavelet, its width is 3 n minus 1. So, it is wider one. What does it mean? That the 

time resolution, if you in fact look at the haar wavelet, the haar wavelet has the smallest 

compact support. So, it has the smallest time resolution, but then it has wide spread, wide 

bandwidth. 

Again, if you recall duration bandwidth result, sigma square t is small. So, sigma square 

omega has to be large daubechies wavelets relative to haar wavelets. As the number of 

vanishing moments increases what happens? The result says, that it should be wider, 

which means, sigma square t is increasing, but sigma square omega is decreasing. 

Therefore, its ability to localize frequencies is much better compared to the haar wavelet 

and coiflets have even better lower band, that is, frequency domain characteristic 

because they are wider, but then they have much poorer time resolution. 

So, if you have an application where you are not worry about the time localization, but 

you want some time localization, not as bad as a Fourier transform, but you want very 

good frequency localization of the signal features, then you can use coif lets, right. 
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Let us conclude this lecture with talking about how to design a wavelet and then we will 

go on to the MATLAB session. As I said, it is essentially consolidation of what we have 

discussed until now. There are certain key requirements. One, for orthogonal wavelets I 

want orthogonality of the scaling function. Two, I want the scaling function to have low 

pass filter characteristics. Three, I am going to specify some number of vanishing 

moments and already I know, the moment I specify vanishing moments, the width of the 

filter is also specified. So, I do not need to separately specify how wide a filter I want or 

how wide the scaling function I want. 

So, let us look at the case with n equals 2, daubechies filter with n equals 2 that means, 2 

vanishing moments. The first criterion is, that it should be, it should, the scaling function 

should be a low pass filter. And we have seen this constraint in the previous lecture that 

the sum of the impulse response coefficients of the low pass filter should be root 2 and 

for orthogonality also we have seen this constraint in the previous lecture. 

So, this is just a constraint that is coming from there again on the low pass filter 

coefficients, and now the constraint on the vanishing moments of the wavelet is being 

expressed as a constraint on the low pass filter. I have not shown you this expression 

before until now. We have seen the expression, integral t power k psi of t dt to be 0, k 



running from 0 to p minus 1. Now, we have changed that to a constraint on the low pass 

filter that is natural. We have been saying, all the properties of the scaling function and 

the wavelets can be translated to a requirement on the filter. So, that is the requirement. 

Again I avoid the proof, that this is indeed the condition corresponding to the vanishing 

moments requirement, that it is now. 

I have, how many constraints do I have, how many equation to I have? I have one 

equation here from number 1, requirement 1. Requirement two, I have N equations 

because I have k running from 0 to N minus 1 and I have another N equations here. So, 

in total I have 2N plus 1 equations. And how many unknowns do I have? I have N filter 

coefficients, right, sorry, 2N filter coefficients because N is a number of vanishing 

moments. So, I have 2N plus N equations, 2 N unknown. So, obviously, I have more 

equations than the number of unknowns. 

Fortunately, these are linearly dependent, that means, I can throw away one of this 

equations and get a unique solution, right. So, we can throw away one of the equations if 

you wish and then arrive at unique solution. The choice is yours. Typically, one throws 

away, for example, the squared. When I said k equal 0 in the orthogonality requirement, I 

get a constraint on the sum square of the impulse response coefficients, because when I 

said k equal 0, what do I get? I get sigma x square of n to be 1 because this is delta k, 

right. You can actually leave aside that equation or you can leave or you can leave aside 

the first one whichever works for you and retain 2N equations and solve for 2N 

unknowns. 

Typically, as the number of vanishing moments grows, you may have to use a computer 

to solve it. I am showing you this for N equals 2, how would this equations look like for 

N equals 1, which is 1 vanishing moment. What is the daubechies wavelet with 1 

vanishing moment? A Haar wavelet. What equations would result when with N equals 1? 

I am going to write that for you. I am going to get h 0 plus h 1 equals root 2, alright. And 

the other equation that I am going to get is h 0 minus h 1 to be 0. This comes from the 

vanishing moments property. In total, I will have 3 equations, but we only take 2 

equations, and the solution to this is straight forward. Solution to these set of equations is 

nothing but what we have here, right. 1 over root 2 plus 1 over root 2 is root 2 and they 



are identical, like now the moment you have h, you have your g and the moment you 

have h and g, you have a, you, phi of t and psi of t. But how do we generate phi, that is, 

the scaling function and the wavelet once I design the filter is the only point that is left 

for discussion. 
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So, given a low pass filter, how do I arrive at phi of t? In fact, let me again reiterate. As 

far as the computation of the dwt is concerned, as far the signal decomposition, signal 

compression, all the application of the DWT, DWT are concerned, I do not need to 

compute the phi of t or phi of t and psi of t. It is sufficient to work with h, h of n and g of 

n. But as I mentioned at the beginning of this lecture, in many situations I would like to 

know how the phi of t are, the phi of t and the psi of t look like. 

So, there are two ways of arriving at the scaling function given the low pass filter. One is 

an iterative algorithm, which uses a scaling relation. This is a famous scaling relation that 

the scaling functions satisfy for them to generate an MRA. What we can do is, we can 

rewrite. So, this is the scaling relation between v 1 and v 0. I can write another scaling 

relation between the subspace v 2 and v 1. 

So, let me go through equation 8 here. This is the basic scaling relation between v 2 and 



v 1 subspaces. I can rewrite the summation here by introducing a dummy variable, which 

is P by, P, where P is 2n. So, I am saying, n is P by 2 and l is a length of the filter that I 

am looking at. 

So, what does this new equation mean? This new equation means, that phi of t by 4 is the 

convolution of phi at a previous scale, that is, at a finer scale. Phi of t by 2 is actually at a 

scale m equals 1, at level m equals 1. Phi of t by 4 is the, is the basis function for v 2, that 

is, at m equals to 2. It is the convolution of phi of m minus 1 t with an upsample h, that 

part. This upsampling I leave it to you to figure out why this is upsampled h. This is not 

simply h of n, this is h of P by 2 because look at this. Now, I have gone from length of a, 

length l h to length to l minus 2, twice the length. How do you get twice length h? By up 

sampling h in such way, that I insert 0s alternatively. 

So, if I take Haar wavelet, I have 1 over root 1, 1 over root 2 if I have upsampled any 

sequence. Typically, upsampling means inserting 0s like the way we do in our 

reconstruction from wavelet coefficients and approximation coefficients that is it. So, 

choose the associated low pass filter, that is, what we have in the beginning such as db 2 

or whatever is known to you, upsample that by inserting zeros and start off with a guess 

for your phi of t, right, that is not given here unfortunately. In the first step, you can you 

have to initialize your phi of t. So, initialize your phi of t and set the iteration count to 0, i 

equal 0. So, once you have upsampled the filter sequence, convolve that with h of n to 

obtain next phi of t. 

So, when you look at phi of t by 4 here, rather than looking upon this as a dilated phi in 

the computation of scaling function, you take a different perspective. What is that 

perspective? The perspective is phi of t by 4. So, suppose I take t equals 1, I know at 

scale, at level m equals 1, I know phi of t by 2. In the sense, I know, at phi at 0.5, but I 

may not know phi at 0.25, right. I may know t, t let us say, in, in practice I can only 

compute phi over a grid that is something you should understand. 

So, I start off with the specification of phi only over a very coarse grid. So, I know phi 

only, let us say, at one point, I am, I am guessing, that phi at two points, let us say for is, 

is some guess, right. And then when I move to phi of t by 2, I am actually filling the 



missing information t by 2 would mean, suppose I guess initially, that phi is known at 0 

and 1 and then the next instances I will get phi at 0.5 and 1. Then, I get 0.25, the values 

of phi at 0.25, 0.5, 0.75 and 1, and so on. How I am getting this equation this values of 

phi, through these scaling relations. 

So, you should not look upon here phi as a continuous function, because I am 

constructing my phi, and I can only construct phi over a grid. There is no closed form 

expression at all, that is the most important thing that you should remember. And I will 

show you, once you, I will show you MATLAB code. The way we run this iterative 

algorithm, how things change. 


