
Introduction to Time-Frequency Analysis and Wavelet Transforms 

Prof. Arun K. Tangirala 

Department of Chemical Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 8.4 

Wavelets for DWT 

Part 1/3 

Hello friends, welcome to lecture 8.4 in the unit on DWT. In this lecture we are going to 

particularly look at different wavelets in scaling functions and study the properties of 

wavelets that are relevant to DWT. So, all this is in the context of DWT. We have done 

this exercise earlier for CWT. So, now, it is the turn of DWT.  
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And also, we will learn how to compute this scaling and wavelet functions from filter 

coefficients. Remember, we have said that as for as computation of DWT is concerned, 

both decomposition and reconstruction, one does not need the scaling functions or the 

wavelets. But still, it is a useful exercise to learn how to derive these functions, how do 

they look like, what do this basics functions look like, because what we need to do 

eventually is to select the wavelet for a particular analysis or a scaling function. 

And, in selecting a particular family of wavelets we would like to what know features 

this basics function have. And, unless we look at these functions in time, that is there 

shapes, we will not able to make much of a decision now. Having said that all the 

properties of wavelets or scaling functions pretty much can be derived from the filter 



coefficients, without actually computing the way, this scalings or the wavelet functions 

themselves, ok. 
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So, let us begin our journey. Just to recall, although I say here, the title of the slide is 

scaling functions for DWT, it also means that we are going to look at, we are looking at 

wavelets as well. As in CWT, the wavelets should satisfy the 0 average condition. So, 

this is just to recap the basic conditions that any wavelet for DWT should satisfy; it 

should have 0 average.  

And, of course, the existence of scaling functions for DWT is very important. And, the 

prime requirement for the existence of a scaling function is that the wavelet should have 

a finite admissibility constant. But, additionally, what we require in DWT, is that the 

scaling function and its integer translates should constitute a basis, and preferably an 

orthonormal basis for some subspace of finite energy signals in the real space, alright.  

So, I hope, it is clear. As for as CWT is concerned a scaling function exist as long as the 

admissibility constant exist. But, for DWT, the set of admissible scaling functions are 

those whose interior translate constitute a basis for some subspace of finite energy 

signals. And, this basis preferably should be orthonormal; why should we seek 

orthonormal basis functions? Well, as we have learnt in the previous lecture, 

orthonormality gives us computation efficiency, nice expressions for reconstruction and 

so on. So, that is the reason essentially, right. 
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Now, as far as the different wavelets for DWT are concerned; and let me also help you 

recall the fact that when we select wavelets in DWT, we normally select this scaling 

function. And, in fact, we select the low pass filter. We do not really directly select the 

wavelet necessarily, but one can do that as well. Eventually we use both these scaling 

functions and the wavelets. So, although, so, it is therefore, justify to begin our 

discussion to talk about the wavelet for DWT.  

And, we will shortly see that whatever requirements I want on the wavelet, actually 

translate to the constrains on filter coefficients. We have seen that already in the last 

lecture, but I am going to explicitly state those constrains here. Now, if you recall the 

lecture on CWT where we discussed the different wavelets of CWT, we said there are 

many types of wavelets - there are real value, there are complex value, and then there is a 

classification based on orthogonality, biorthogonolity, and so on. 

In CWT, we restricted our discussion to only real and complex value CWT’s, wavelets. 

Here, when it comes to DWT, we are going to primarily use real value wavelets, but 

those that are orthogonal or biorthogonal or sometimes non orthogonal. So, let us look at 

these terms briefly.  

We know already what orthogonal wavelets are. What we mean by orthogonal wavelets 

is, that wavelet at any scale, 2 power m, because we are looking at dyadic’s scales, and 

its integer translates should be orthogonal to this scaling function basis at that scale. So, 

if I take any scale or any level, m, then I have a set of wavelets at that scale, and their 



integer translates. They should be orthogonal to the phi t at that scale. So, phi m, n at t. 

So, this is essentially saying, using the notation that we introduced in the previous 

lecture, w j subspace should be the orthogonal to the v j subspace; w j is a space of, 

sorry, w m is the space of details at scale 2 power m, and v m is a space of 

approximations at level m or it scale to power m; w m should be orthogonal to v m that is 

what we mean here.  

And, once our condition is imposed, as we have seen in the previous lecture, it amounts 

to saying that wavelets themselves are orthogonal at that scale; that is the translates of 

wavelets and the wavelets are orthogonal. Now, this condition can be restated in terms of 

the filters. Essentially, we want the filters to be orthogonal. What we mean, what do we 

mean by orthogonal filters? Well, the inner product of the low pass and the high pass 

filters should be 0. So, let us take the example of a Haar wavelet.  
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So, we know, for the Haar wavelet or the Haar scaling function, we know that the low 

pass filter associated with this phi t a c of length 2, and the coefficients are 1 over root 2, 

1 over root 2. And, the high pass filter associated with the wavelet is again of the same 

length, and we know how to derive g from here because the r wavelet is orthogonal to 

this scaling function at any scale. You can use the result that we gave in the previous 

lecture, can verify that, g n, is minus 1 raise to 1 minus n, h.  

So, you can verify that g is in indeed, this here. And, n, of course, begins from 1 here. 

So, if I set, n equals 1, then I get, g 1, to be, 1 over root 2; and, if I set, n equals 2, then I 



get, minus 1 over root 2. So, you can quickly see here that the inner product between 

these 2 sequences is 0. And, this amounts to saying that the wavelet is orthogonal to the 

scaling function at that scale, or at any scale in fact. Although we write this at the level, 

m equals 0, this is also true at any scale for all n; that is at a fixed m, for all m this is true. 

That is what we mean by orthogonality here. In terms of this subspaces we say that V m 

is orthogonal to W m; psi m, n spans a subspace W m, and phi m, n spans a subspace V 

m. 

In addition, we have seen in the previous lecture, when orthogonality is satisfied by the 

wavelets and scaling functions or by the filters, then the synthesis filters are also 

identical to the decomposition filters. So, that is naturally guaranteed. And, orthogonality 

essentially means that the family of wavelets, that is now if you look at entire set of 

wavelets, not just at one scale, but at all scales and their integer translates, put together, it 

constitutes, this family constitutes an orthogonal basis for L 2 R.  
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So, let me again show that to you schematically. So, what we have from MRA is that 

these scaling functions and the wavelets are spanning a set of embedded or nested 

spaces. So, if you recall the diagram that we drew earlier, that is in the previous lecture, 

then if we call is as V 0, then V 0 is spanned by phi t; and then, you have V 1, and then 

you have V 2, and so on. And, of course, V 0 itself is contained in V minus 1. So, these 

subscripts are pertaining to the, referring to the value of m essentially. 



And, this is V 2, what, difference between V 2 and V 1, that is this space here is W 2 and 

this is W 1, and so on. So, if I had a V 3 here, then I would have W 3. Now, you can see 

quickly that V 3, V 2, V 1, V 0, V subscript minus 1, and so on, they are all inclusive. 

So, the basis functions responsible for these approximation subspaces, they are not 

independent because one is contained in the other, right.  

If I look at the basis functions for all the subspaces, V minus 1, V 0, V 1, V 2, V 3, and 

so on; in other words, if I look at phi m, n t for all m n in the integer set, this family of 

scaling functions cannot be a basis for the real numbers basis. Definitely, when you look 

at all these, the union of V 3, V 2, V 1, V 0, V minus 1, and so on, if you look at the 

union of V m, as m runs from minus infinity to infinity, that is definitely the space of 

finite energy signals; that, there is no doubt about. But, what is not true, or what is not 

true is that this is the basis for L 2 R; this cannot be because one of the prime 

requirements of basis is that they should be independent.  

On the other hand, if you look at, W 3, W 2, W 1, and then W 0, and W minus 1, and so 

on, they are all exclusive, right. That means, the basis functions responsible for V 2 are 

in fact, orthogonal, or they are independent of the basis functions in W 3, and W 1, and 

W 0, and so on. So, what are the basis function for W 3, or W 2, or W 3 and W 1 and so 

on, they are the wavelets, and that scale, and that interior translates.  

Therefore, the basis functions here that span the detail spaces, as m runs from minus 

infinity to infinity, they can constitute a basis for the space of finite energy real signals. 

In other words, here if I look at, psi m, n t, again m and n or the entire integer set, they 

can form a basis; what kind of basis? Orthonormal basis. They are not only orthonormal 

within subspace W 2, but they are also orthogonal across subspaces, that is what this 

means, that is a very important point, whereas, for the scaling functions that is not true.  

The scaling functions are orthonormal only within a subspace, but if I look at the scaling 

function in V, for V 1 and V 2, they are not mutually orthogonal. So, when we impose 

the requirement that the scaling function should be orthogonal or orthonormal, we only 

impose at a specific scale; we do not impose orthonormality across scales; that is a point.  

Whereas, with wavelets that is not the case; Vs, they are not only orthonormal at a scale 

that you, when we say they, the wavelet and its integer translates. That is, at any scale the 

wavelet family is this, 2 to the minus m by 2 times, 2, times psi 2 to the minus m t minus 



n). So, for all values of n that is what meant by they, they are orthonormal at a given m 

and across m as well; that is a beauty of this wavelets. 

And likewise, I said here, the union of all the approximation subspaces is L 2 R which is 

the space of finite and the real signals. The union of all Ws is also L 2 R. That is, I can 

only look at the approximation spaces or the details spaces, but as far as basis is 

concerned this do not, does not constitute a basis, whereas, this constitute a basis, in fact, 

orthonormal basis. So, that makes a big difference, and that is why a lot of discussions 

begin with wavelets rather than with scaling function.  

But, in DWT, because we are interested in approximations; in practice, I am interested in 

approximations, I want to construct approximations, and the discussion therefore begins 

from approximation. But, as far as basis is concerned wavelets are the basis functions for 

the L 2 R.  

Of course, as we mentioned earlier, when I have orthogonal wavelets, I have the 

privilege of, luxury of computational efficiency and compact representations of signal; 

compact meaning, with as few coefficients as possible. Remember, coefficients are the 

inner products between the signals and the basis functions.  
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Moving to biorthogonal wavelets which we did not discuss in detail in previous lecture, 

but I did mentioned this term when we were talking about synthesis filters, after we 

discussed the decomposition filters. Remember, we imposed orthogonality at the time of 



designing the decomposing filters themselves. That is, we said W m is should be 

perpendicular to V m. But, suppose I do not do that, suppose I say I want a set of 

wavelets that span the details space, and I already have a scaling, set of scaling functions 

that span the approximations space at any scale, and I do not impose orthogonality there, 

but just have some wavelets that satisfy with the condition that they should span the 

detail subspace; and then look at the synthesis that is when I turn to the reconstruction at 

that time I require that the synthesis wavelet filter should be orthogonal to the analysis 

scaling function, alright. So, let me again show what I mean by that.  
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Just as we have here approximation and detailed spaces spanned by the scaling functions 

and wavelets, let us call them decomposition filters, I can also have spaces span by the 

synthesis scaling functions and synthesis wavelets. We have used this before. We have 

mentioned that in CWT as well. I can use different synthesis function; synthesis function 

that is different from the analyzing function. Likewise here, I can use a scaling function 

for synthesis that is different from the analysis function. 

Now, just as we developed this entire theory based on phi t and psi t, I can also have 

approximation spaces based on phi tiled of t and detail spaces based on psi tilted of t; 

they are essentially duals. So, you, it is not that only phi t and psi t can generate this 

spaces, they are also capable of generating this spaces. If you use a notation now, that the 

subspace span by phi tilde m of t minus n where n is some interior set, let us say this 

spans V m tilde, and likewise the set of wavelet functions, but the synthesis wavelet 



functions and there integer translates, span W m tilde, then we arrive at biorthogonal 

wavelets by requiring that W m tilde b orthogonal to V m, and V m tilde b perpendicular 

or orthogonal to W m. 

So, this is different from what we see in orthogonal wavelets where we require W m and 

V m to be orthogonal. In this, here, we, it is a biorthogonal. So, you see that W m is not 

perpendicular to V m, but it is perpendicular to the approximation space generated by the 

synthesis wavelet functions. Now, at, on the space of it, it sounds a bit weird, as to what 

does is make, what does this mean?  

Well, what this means is that there is a certain symmetricity here, in the reconstruction 

and the decomposition. And, in fact, this symmetricity here gives rise to what are known 

as symmetric wavelet filters. You can show that orthogonal filters can hardly be 

symmetric. You can design symmetric orthogonal filters. What do you mean by 

symmetry? Well, when I look at the scaling function, for example, the Daubechie scaling 

function, it looks like this, for example, qualitatively.  

So, this is how a Daubechie scaling function would look like, alright, of some order. 

Now, this Daubechie, wavelet, scaling function is an orthogonal scaling function that is it 

belongs to the family, it, corresponding to this is a wavelet which is orthogonal wavelet. 

Daubechie wavelets are not biorthogonal wavelets. Now, you can see that this scaling 

function is not symmetric. In fact, the associated wavelet is also not symmetric.  

So, what happens if there is no symmetricity? Remember, I am using wavelets as filters. 

And, whenever I use, whenever I perform filtering, whenever I filter a signal, the phase 

of the signal is altered. And, when I use filters whose impulse responses are not 

symmetric, although I do not show impulse response here, but phi t is the impulse 

response of the associated low pass filter. When that is not symmetric then phase 

distortion occurs.  

And, when phase distortion occurs, the sharp changes or the edges in the signal are 

distorted. And, that is not really good for signal analysis in certain applications. I want 

therefore, symmetric wavelets and scaling functions with as minimum width as possible 

because if I have larger and larger width what happens is the time resolution of the 

wavelet, the mother wave itself will be poor. Remember, ultimately we are looking at 

time frequency analysis. 



With orthogonal wavelets, to design a near symmetric wavelet you require a much larger 

support in time. And, as a result, also much larger number of vanishing movements, as 

usual we will learn later, and therefore, you have to sacrifice on the, that is you have to 

get a more smooth wavelet and so on.  

Whereas, with biorthogonal wavelets, you can nicely design symmetric wavelets. In fact, 

there is a whole lot of literature. I will direct you to a book, text book which discusses all 

applications of different wavelets to different processes. And, in that text book you will 

see that biorthogonal wavelets are very good for texture classification, image analysis, 

and so on where orthogonal wavelets will generate a lot more coefficients.  

Remember, ultimately, one of the main applications of DWT is signal compression. And, 

in signal compression we are trying, we are seeking wavelets that can represent a given 

signal in as few coefficients as possible. With biorthogonal wavelets you can achieve this 

in a much better manner in many applications than orthogonal wavelets; that is because 

again of the symmetry and the flexibility that you have given. Orthogonality is a very 

tight requirement, but it is useful in its own way. 

One of the examples of biorthogonal wavelets are the biorthogonal spline wavelet. I am 

not showing you any wavelet shapes here per say; we will do that when we look at the 

MATLAB session. At this movement you may be wondering why we are not looking at 

any graphs or any profiles or the functions or wavelets, but I would like to reserve that 

for the MATLAB session and show you how you yourself can plot this wavelet functions 

and look at them. I have already shown glimpses of that in CWT. 
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Now finally, we have non orthogonal wavelets. This is, these wavelets are also popular 

for one reason. That reason is when I use orthogonal wavelets which are used widely for 

signal estimation and signal compression, despite having many advantages one of the 

key disadvantage of orthogonal, advantages of the, disadvantages of the orthogonal 

wavelets is that it is not shift invariant or translation invariant. What do we mean by that?  

Well, if there is a feature in the signal, let us say, it is a biomedical signal, or a signal 

coming from vibration missionary, and so on, there are certain features of interest to me, 

and I would like to keep track of how this features are shifting in time. And, if you recall 

the way we are computing the dyadic DWT and then the orthogonal DWT, basically 

what we are doing is we are evaluating CWT at specific scales and also translating at 

specific translations only, right.  

That is we are translating in such a way that we generate non over lapping basis 

functions. And, that results in minimal representation. But then, what happens is, if there 

is a feature that is, that are shifted in time, alright, the same feature appears at again at a 

later time. And, this shift in time for the feature, if that is not commensurate with the 

shift of the wavelet functions that you are using, then you will lose out on that feature.  

That is, this feature is not, the shift of the feature in the signal, it could be a sudden 

change or whatever, is not correctly captured by the DWT. That is because you are 

taking time steps in a particular manner that is much different from the sampling interval 

of the signal. So, to overcome that property, that disadvantage, what one does is only 



discretizes the scales and translates, that is chooses a translation parameter equal to the 

sampling interval. That is chooses to march ahead in time which is equal to the sampling 

interval.  

The tau parameter that we had in CWT is now no longer going to be, n times 2 power m. 

It going to be simply n where n will be equal to the sampling instant itself which means I 

will still choose dyadic scales; that is not the reason that I am missing out on the 

translation invariance. The scales has got nothing to do with it. The reason why I was not 

able to detect a shift of the feature in time is because I was taking steps proportional to 

the scale of the wavelets. 

But now, I am going to relax that and I am going to let myself, let this wavelet move not 

proportional to width of the scale, but in steps of sampling interval. There, as a result, if 

there is feature that has shifted in time, I can easily capture that feature correctly. And, 

that leads to what is known as shift invariant DWT or maximal overlap DWT. What, 

why do we have a maximal overlap here?  

Because, in time, I am marching ahead one sampling interval at a time. Obviously, the 

disadvantage of that would be the loss of computational efficiency. I have to compute a 

lot more coefficients than necessary; as a result we get redundant representation of the 

signal, and so on. But, this redundancy and the loss of computational efficiency come 

with an advantage that I will be able to detect shifts in the features. 
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Now, clearly, the movement I have wavelets that are not shifting in time proportional to 

the scale, but rather proportional to the sampling interval, I am going to generate a set of 

overlapping wavelet. So, let me just show that to you on the graph. Let us say, I have 

some signal here, and what I am doing in, let us peak a wavelet here which is located at 

this point; this is some wavelet which is located at the origin at some scale. In DWT 

what I do is, the next wavelet that would analyze the signal would begin from here and 

the center would be placed here.  

Of course, I am choosing, I am drawing it in very qualitative manner, just, but hope you 

get the point, right. It is going to be of the same with here, and so on. So, this is n equals 

0, n equals 1, at that scale, and so on. This is how I am going to march ahead in time. 

Whereas, in maximal overlap DWT, the next wavelet, suppose this is the sampling 

interval here, and so on, the next wavelet is going to be located, is just going to be shifted 

in time this way, alright. That is how it is going to shift in time. 

As you can see, this wavelet here, shifted wavelet, and this wavelet here are highly 

overlapping. In fact, it is maximal overlapping. Whereas, with the DWT that is the 

classical DWT, orthogonal DWT, there is not, there is no overlap between this wavelet, 

the shifted wavelet and this. But, this big shift that I have taken could miss out of feature 

that would have shifted in time much less than the shift that you have taken at that scale. 

That is the step that you have taken at that scale.  

If there was a feature here, in the signal, somewhere here, and at a later time the same 

feature appeared here. Because you have taken this step here, in classical DWT, you 

would miss capturing this shift, and that is the main problem with the classical DWT. On 

the other hand, because of the lack of overlap you have computational efficiency, you 

have minimum representation, and so on.  

So, I hope now you understand what is the difference between a shift invariant DWT and 

the classical DWT. A lot of this is discussed in the book by Persual and Walden. And, I 

will give you a bunch of references in the closing lecture. But, you can just go and read, 

the book is titled “Wavelets For Time Series Analysis”.  


