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Lecture - 2.1 

Basic definitions and concepts 

 

So, welcome to lecture two point one of the course in unit one.We obtained an overview 

of the topic of time frequency analysis and wavelet transforms. We now formally get into 

the course. Since we are going to deal with signals, periodic signals, aperiodic signals 

and so on, it is important to learn a few mathematical definitions and also obtain suitable 

interpretations before we even review Fourier transforms and that is the objective of this 

unit. And this is the first lecture in this unit, therefore number 2.1. 
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In this module we will learn the basic concepts of aperiodic signals, both continuous time 

and discrete time periodic signals. Importantly, we will learn the difference between 

deterministic and stochastic signals. It is quite important to know that and we will 

conclude the module with brief review of the sampling theory because we are going to 

primarily deal with sample data. 

Theoretically, we will work with continuous time signals, but when it comes to the 

application of this techniques, we are going to work with sample data and therefore, it is 



important to know at least some basic theory of sampling and particularly the sampling 

theorem itself. 
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So, let us start with the concept of a deterministic signal. We all have an intuitive feeling 

of what a deterministic signal is. A signal is set to be deterministic if it can be predicted 

accurately, that is one way of looking at it; that is a prediction view point. An alternative 

way of looking at a deterministic signal is, that there exist an mathematical function, that 

will predict the entire course of its evolution, that is, over its entire existence one can 

give numerals examples. Deterministic signals need not be periodic, although I give a 

few periodic signal as examples. They can be anything, which you can predict accurately. 

So, the keyword is the accurate prediction. 
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And when it comes to stochastic signals, obviously, one should expect the prime 

difference being, that the stochastic signal or a random signal is that signal, which cannot 

be predicted accurately. It does not mean however, that you cannot predict it. So, you 

should note the point that I make towards the end of the slide here. 

The stochastic signal is typically misunderstood as being unpredictable, that is not true. 

You can predict a stochastic signal, but not accurately. You may be able to predict with 

99.99 percent accuracy, but definitely not 100 percent accuracy. So, the prediction 

accuracy is anywhere between 0 to 99.99 percent. When you cannot predict a stochastic 

signal, that is, when the prediction accuracy is 0, then we call that as a white noise signal 

and so on. So, that is a prediction view point. 

Again, the other view point that we have is, that exists no mathematical function that can 

actually predict or that can describe the behavior of a stochastic signal over its existence. 

You may take small part of the random signal, may be able to fit a mathematical 

function, but this mathematical function will not be useful in extrapolating. You may be 

able to fit. For example, if I generate 100 samples of a random signal, I may be able to 

explain it accurately using a 99th order or degree polynomial, but it will miserably fail 

outside that interval when it comes to prediction. 

Now, there are several examples in real life, that we cannot, that that fall into this 

category of random signals and you can find engineering examples economics. These are 



very prevalent in economics, in engineering, of course, where you have disturbances and 

so on. In economics, we looks at stock market prices and so on. In reality, there exist no 

signal that it is accurately predictable, which means all signals that we encounter in 

reality are random. Then, why do we even deal with the world of deterministic signals is 

something that we should ask. 
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Well, a lot of measurements that we obtain a lot of processes that we encounter have a 

deterministic nature as well. For example, even if the true process is predictable, there is 

some predictability for sure. But when we observe this process, then measurement errors 

and disturbances are going to corrupt your observation. As a result, the measurements, 

which you deal with in reality are going to contain mix of deterministic and random 

effects. 

Now, the question is how much of deterministic and how much of random randomness is 

present in the signal? It is a very qualitative question, but usually it is quantified by what 

is known as signal to noise ratio. It essentially gives you an idea of what is the extent of 

determinism present in a signal to the extent of uncertainty. When we have high signal to 

noise ratio we say, that the measurement is predominantly deterministic and when we 

have low signal to noise ratio, we treat it as predominantly stochastic. So, you, you are 

going to encounter typically, what we known, what we call as composite signals. 



In this course particularly, we are going to deal with primarily deterministic or 

predominantly deterministic signals. You are going to switch off the random component, 

but with a big word of caution. The techniques, that we learn for deterministic signals are 

not necessarily applicable to the class of random signals. There are number of examples, 

that can be given, but I am not going to, going to back, but that is a fact that one should 

remember. You cannot straightaway apply this the techniques that you learn for 

deterministic signals to the random signals as well as and classic example is Fourier 

transform. Fourier, a transform of deterministic signals exist, a class of deterministic 

signals, but Fourier transforms of random signals do not exist. 

And another point that should be noted is a random signal by definition is assumed to 

exist for infinite time. There is, there is no randomness about it existence. What is 

random about random signal is the uncertainty associated with the value of the signal at 

each instant. So, a prime difference between deterministic and stochastic signal or a 

random signal is, at each instant in time, a deterministic signal can only assume one and 

only one value. There is no uncertainty about it, but when it comes to a random signal at 

each instant, there exist many possibilities out of which you end up observing one. And 

philosophical point that you should find, you could find useful is, that no process is truly 

random or truly deterministic. It essentially depends on the knowledge and that is why 

the prediction view point is helpful. 

A signal becomes random if I do not have the complete knowledge of the process that is 

generating it. On the other hand, if I have complete knowledge of the process that is 

generating, then the signal is deterministic to me. So, as I obtain more and more 

knowledge of the process that is generating the signal you can say, that the determinism 

is increasing, it is just in loose terms, but the uncertainty is shrinking and so on. Anyway, 

since we are going to deal with deterministic signals, primarily we will not. 

Well, further on random signals I would recommend, that you read any other book, that 

is that deal with this stochastic signal and so on. Occasionally, we may talk about it, but 

not too much in detail. 
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So, let us move on to discussing what is a periodic continuous time signal. These are 

elementary concepts that we learn in even in our first year of under graduation and so on. 

The definition of a periodic continuous time signal is straight forward. If you can find a 

finite time after which the signal repeat itself, then you say, you can say that the signal is 

periodic. This finite time can be continuous, that is the important fact to remember 

because when we move in to discrete time signals, there is going to be huge difference. 

The first time after which you, you find the repetition of the signal is known as a 

fundamental time period and the inverse of this fundamental time period is call the 

fundamental frequency of that periodic signal. There are again several examples that one 

can give as you can see here. There, there are sign signals and there are other square 

rectangular signals and so on. And also note, that the frequency can be expressed either 

in cyclic frequency as cycles for unit time or in angular as angular frequency as radians 

per unit time. The relations being very straight forward omega is 2 pi f. 
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When it comes to periodic discrete time signals, there are some striking differences with 

respect to the continuous time counterparts. The first fact being, that a signal is periodic, 

discrete time signal is periodic if and only if you can find an integer number of samples 

under which you can notice a reputation. So, this is in contrast to the continuous time 

signal where the period was continuous value. Now, the period is integer value. In fact, it 

is an, it is a positive integer. Therefore, the period is always expressed in terms of 

samples for discrete time signal. 

Now, as a consequence of this you cannot really say, that if I have a sine wave, let us say 

I have sine 2 pi f naught k, I cannot really straightaway say, that the periodic of this 

discrete time signal is 1 over f. For example, if f was, let us say, 0.3, I cannot say, that the 

period is 1 over 0.3 because 1 over 0.3 is not an integer. So, what do I do? I have to, even 

0.4 for example, I cannot say 1 over 0.4 is 2.5. There is nothing like a 2 and half samples. 

Then, I will have to express a frequency in the rational form and its simplest rational 

form. So, 0.4 can be written as 2 over 5 in its simplest rational form. And, and if you 

look at the units of the frequency of a discrete time signal, it is cycles per sample. 

So, when I have f equals 0.4 it is completing 0.4 cycles in a sample. In other words, it is 

completing, it takes 2 and half samples should complete one cycle, but I will not be able 

to observe that. So, the first time after which I will observe the reputation is 5 samples, 

therefore 5 is a period of the signal. 



Now, what this also means, that discrete time signals are periodic if and only if you can 

express f as a rational number. So, if the frequency of the discrete time signal is 

irrational, then automatically it means, that it is not periodic, which means, you will be 

never be able to find an integer number of samples after which you will see it is 

repetition. This is probably the most important difference between discrete time periodic 

signal and continuous time periodic signal. This is something that we shall remember. 
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Now, as I said earlier, since you are going to primarily deal with sample data, it is 

important to understand the sampling theory, the consequence of sampling and so on. 

The process of sampling itself is fairly straight forward, as you see in the schematic here. 

The act of sampling is nothing but essentially, obtaining values of continuous time signal 

at specific instance in time. And sampling does not necessarily mean regular sampling, 

does not mean periodic sampling necessarily. When we observe this signal at regular 

intervals of time, then we call this as uniform or periodic sampling, which is what we are 

going to assume in this course. 

So, as you can seen in the schematic, there is a sampler that is involved in producing the 

samples for you and the sampling interval is denoted by T s and the inverse of this is call. 

The sampling frequency, typically expressed in hertz, but you should also note the units 

of F s. It is actually the number of samples obtained in unit time. 



Question that we want to ask is, what is a rate at which I want to sample a signal? How 

fast should I sample? How fast should I observe? Intuitively, we know that it depends on 

the rate at which it changes, right. If the signal is changing slowly, then I would, I can 

((Refer Time: 13:41)) to observe at a slower sampling rate. And if the signal is changing 

rapidly in, in, in, amplitude, then I need to observe it fast. Now, this question was studied 

at least more than 60 years ago by many among them a prominent being ((Refer Time: 

13:58)) and so on. 

And the result is the sampling theorem, that we learn today in all signal processing and 

communication text and so on. So, what is the sampling theorem, tell me? It essentially 

tells me how fast I should sample a signal given the knowledge of the frequency content 

of the signal. So, once again you see why frequency domain analysis is useful. 
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So, let us understand this sampling theorem in an intuitive and practical manner rather 

than going through rigorous proofs. To understand is, first we will establish the 

connection between a continuous time and a sample signal. Not all discrete time signals 

are necessarily coming out of a sample continuous time signal. They are not a 

consequence of sampling. But if the discrete time signal is being generated by sampling a 

continuous time signal, then they, you can establish a connection between the frequency 

of the discrete time signal and frequency of the continuous time signal. 



So, if you look at the example, that we use here, we consider a continuous time sine 

wave of frequency big F and when I sample it uniformly at a sampling interval of a T s, 

then I obtain a discrete time sine wave. As you can see, the math is fairly straight 

forward. Now, when you re-express this discrete time sine wave in terms of f, that is the 

small f, then it is clear, that the small f is F over F s. You can see, the small f is big F over 

the big F s. F s is the sampling frequency, which means, that I can always calculate what 

is the frequency of the discrete time signal if I know the frequency of the continuous 

time signal and sampling frequency. Now, there is a, let us look at this example. 

So, suppose I have a continuous time sine wave of frequency 50 hertz being sampled at 

150 samples per second, then I obtain a discrete time sine wave with a frequency of 0.3 

cycles per sample. Now, this also means, that if I am given the frequency of the discrete 

time signal and the sampling frequency, I can back calculate the frequency of the 

continuous time signal and the formula is, relation is fairly straight forward. So, that is 

just a consequence. So, the equation that you see here is a consequence of the relation 

that we see at the top. This is something that we will use in understanding the sampling 

theorem. 
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So, let us move on and learn an important concept called aliasing, which is useful in 

understanding the sampling theorem. So, we understood the connections between the 

frequency of a discrete time sample signal and, and frequency of the continuous time 



signal. As a consequence of that relation, that we studied earlier and as a consequence of 

the property of the discrete time signal, we will understand, that how the sampling 

theorem emanates. 

In aliasing, the most important fact to remember is the property of discrete time sine 

waves, which is, that two discrete time signals or sine waves of different frequencies can 

correspond to the same continuous time signal, that is something, that is something, that 

is not so intuitive straight away, but it becomes clear when we understand the nature of 

this discrete time sine waves. 

So, let us assume, that I have two discrete time sine waves of frequency f 2 and f 1 and if 

these two frequencies are separated by an integer, we are talking of cyclic frequencies. 

So, if I have f 2 being f 1 plus sum M, where M is an integer, then you can rewrite this 

sine wave of frequency f 2 as a sine wave of a frequency f 1. They are going to be 

identical, which means, if I generate a sine wave of frequency f 2 and I generate a sine 

wave of frequency f 1 and they are only deferring by an integer. So, let us say f 1 is 0.4 

and f 2 is 1.4 and I plot this signals, I look at the signals, even when I look at a values 

they are going to be indistinguishable. 

Why is that happening? Because this is a property of the trigonometric function, which is 

a sine or cosine. They have a period of 2 pi in angular frequency or a period of 1 cycle in 

in terms of cyclic frequency. So, what this means is, that not all discrete times sine 

signals or sinusoids are unique. Only those signals in the frequency range 0 and 1, either 

you include 0 and exclude 1 or you exclude 0 and include 1. Typically, we include 0 

because that corresponds to easy understanding of a DC component. So, 1 is excluded 

and that is why you see, that I have a parentheses for 1 and square bracket for 0 or you 

could say, minus 0.5, 2.5, any frequency range of interval 1 with 1 will contain sine 

waves that are unique. That means, no two sine waves in this interval are going to be 

identical, but outside this interval you can always, you can always find a sine wave, but 

you can always find a counterpart of that sin wave within this fundamental interval. 

So, just to illustrate the point here, I take two continuous time sine signals although 

aliasing per say is not necessarily relative to sampling. Aliasing is purely a property of 

discrete time signals. Since we are studying sampling I am giving you this example. 



So, let us consider two continuous time signals of two different frequencies. One has a 

frequency of 1 hertz and other has a frequency of 5 hertz. Now, I am going to sample 

these two signals at the sampling frequency of 4 hertz. So, what happens is, what you see 

here on the right, the blue signal on the top and their corresponds to the sample version 

of the blue or the solid continuous time signal that you see, which is 1 hertz. And the red 

one at the bottom corresponds to the sample version of the discrete continuous time 

signal, which has a high frequency. 

Now, if you, if I did not give you these continuous time signals to you, these two discrete 

time signals we look perfectly alike, you will not be able to distinguish, which means, if 

you were to sit and reconstruct the corresponding continuous time signal, that is, if I 

were to back calculate the frequency of the continuous time signal, that generated these 

two, the answer will come out to be the same. You will not be able to distinguish 

essentially between these two signals. This is what is called aliasing in sampling and this 

is what has to be avoided, which means, I have not sampled the high frequency signal 

fast enough. 

And you see this phenomenon in many films and movies. The car wheels, if you see the 

motion of a vehicle and the car tyre is actually rotating very fast, but the frame rate is not 

fast enough to capture the rotation of the wheel, as a result you will see the car, the tyres 

being going very slowly as if they are not moving. In fact, sometimes in an opposite 

direction. So, this is basic idea in sampling, deriving the sampling theorem. 
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So, what we want to make sure is, I should choose my sampling frequency such that the 

frequency of the resulting sample signal is always less than half in magnitude. Because 

we have this restriction, that the fundamental frequency for, for uniqueness of discrete 

time signals. The fundamental frequency should be in interval minus 0.5 point to 0.5. In 

other words, F s has to be greater than 2 times F that is the essence of sampling theorem. 

Of course, if we look at the formal proofs for sampling theorem, the formal proofs do not 

rely on this kind of adhoc derivation. But this adhoc derivation is also theoretically 

sound, but not regressive enough to prove this sampling theorem. Nevertheless, we got 

the point. The point is, that I should choose a sampling frequency that is at least as twice 

as the frequency of the continuous time signal. In practice, what is going to happen is, 

signal is going to contain mixed frequencies and therefore, I need to look at the 

maximum frequency. And sampling theorem says, base your sampling frequency with 

respect to the maximum frequency. 

So, there is an example that I give here, which you can easily go through. The maximum 

frequency in a continuous time signal is 50 hertz and therefore, at least I should choose 

100 hertz. In practice, I choose much greater than this. So, quick note on what is the 

situation reality. Situation reality is, that I do not know the maximum frequency a priory. 

So, what is done is, there are going to be antialiasing filters that are going to be placed in 



your sampling line, which will clip the maximum frequency based on the prior 

knowledge, other process and then the sampling is performed. 
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Now, very quick note. We will conclude with the concept of nyquist frequency, which is 

nothing but a corollary of the sampling theorem. If I am given the sampling frequency 

and I am asked what is the maximum frequency that I can recover unambiguously, then 

that is half the sampling frequency that is fairly obvious from the sampling theorem. This 

half the sampling frequency is known as nyquist frequency. 
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So, with this we come to the conclusion of this module where we have learnt the 

concepts of deterministic stochastic and stochastic signals, periodic continuous time and 

discrete time signals and also we have looked at the sampling theorem bit more in detail. 

In the next module we are going to learn concept such as autocovariance function for 

deterministic signals and energy and power densities as well as ((Refer Time: 24:24)) on 

power signals. 

Thank you. 


