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Brings us to the conclusion of how CWT can be applied to singularity deduction. The 

third application that we want to look at is a estimation of instantaneous frequencies. 

Now, the idea here is very much similar to what you have seen in spectrogram beside the 

local maxima, just like we evaluated the local maxima for singularity deduction. We 

could also use local maxima for computing the instantaneous frequencies. In 

spectrogram we call this as the Fourier, Windowed Fourier ridges, and in wavelet 

transform world we call this as wavelet ridges. Essentially what you do is you plot the 

scalogram and follow the local maxima, and then that is spot the scales or the 

frequencies at which you see the local maxima and those will give you the instantaneous 

frequencies instruments. It is important to use analytic wavelet transforms that is you 

should use analytic or complex Morlet type wavelets to really exploit this property. 
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To give you an example here which I borrowed from Stephane Mallat book, what we do 

is we perform, we compute this scalogram of linear chirp computer with the Gabor 

wavelet. Well, Gabor wavelet is essentially a Morlet wavelet and the expression for the 



normalize scalogram is given here. As you can see from this expression, the normalize 

scalogram reaches a maximum at omega of tau which is two times a times tau. Now, this 

2 a tau is nothing but the derivative of the face of this linear chirp which is nothing but 

the instantaneous frequency itself. So, therefore, the points of maxima of the normalize 

scalogram will give me the instantaneous frequencies estimates, these are called ridges. 

What is important for your wavelet ridges to really come up with this decent estimate of 

instantaneous frequencies, it is important that the signal has certain characteristics in 

itself. That is how the frequency changes with time. It is not that your wavelet ridges will 

always give you very good estimates of instantaneous frequencies depends on how they 

are separated in time, and how the amplitude also change, that is what kind of amplitude 

modulations you have in the signal. So, the mathematical conditions and all of that are 

given nicely in Mallat’s book, but we will not well into that. Let me just show you a 

couple of examples again borrowed from Stephane Mallat’s book. 
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This again is reproduced from Mallat’s book with the help of wavelet. Signal of the left 

is a mixture of a linear chirp plus a quadratic chirp and couple of Gaussian atoms, and 

from the figure, you should be able to figure out where these Gaussian atoms are located. 

First of all, what you see here on the top is a signal itself, and what you see on the 

bottom are the ridges in computer using wavelet. You can see that ridges have nicely 

detected the linear and the quadratic varying nature of the frequencies, and you can see 



some small shadows here, gray shadows here which essentially indicate the presence of 

the Gaussian atoms, that is where they are located in the signal. In fact, you can generate 

this signal using wavelet. On the right, we have some of hyperbolic chirps, the 

expression for the hyperbolic, some of hyperbolic chirps are given on the top. The values 

of beta and beta, beta 1 and beta 2 are also given in Mallat’s Book, but more than the 

values what is important for us is to see whether the wavelet ridges have correctly come 

up with the instantaneous frequency estimates. 

So, the top here once again is a signal and the bottom here of the ridges. It is clear now 

that wavelets ridges have come up with very good estimates of the instantaneous 

frequencies. Recall, if I use standard instantaneous frequency definition for any of the 

signals, the instantaneous frequency estimates will breakdown. The standard procedure 

consists of constructing an analytical representation and taking the derivative of the 

phase. So, that would not work here. What is being done here is we are estimating 

instantaneous frequencies in indirect manner. 
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Let us look at an example where the wavelet ridges really perform a poor job and the 

STFT ridges perform a very good job. That is a case for the sum of linear chirps again 

borrowed from Mallat’s book in chapter 4, and expression for the some of linear chirps is 

given on the top, the ridges computed from scalogram are shown on the left, and the one 

computed from the spectrogram are shown to the right. It is clear from this plot here that 



the ridges computed from the wavelet scalogram starts showing oscillatory behavior, that 

is because at this point in time if the nature that is separability that can be achieved by 

wavelet ridges has broken down. There is a certain mathematical condition that is not 

fulfilled any longer, the frequencies are to close wavelets to dissolve and amplitude 

modulations are also not good enough whereas, here the spectrogram is able to resolve 

this. 

Why is there a difference here? It is because when I compute spectrogram, I choose a 

fixed window with and across entire time frequency (( )), right. Therefore, time 

frequency resolution or localization is fixed whereas, with scalogram recall that as I 

move into the high frequency regime, there is more smearing of the energy which means 

the resolvability of high frequencies is broken down and that is exactly what is 

happening here. If I had this high frequency in time, initially that is at beginning rather 

than at later times, then also that would be the same story because it is all about the 

frequency resolution resolving ability of this particular technique because wavelets use 

time frequency varying windows that is the band-widths are varying. You have this 

problem whereas, in spectrogram the time frequency spreads or fixed along with the time 

scale or time frequency plain, and therefore the resolvability is a same in the entire time 

frequency. That is the main reason. You would not run into these interferences if these 

interferences were occurring at low frequencies for example. So, the scalogram would be 

absolutely fine with that. 

(Refer Slide Time: 07:13) 

 



Now, let us discuss the final application of the continuous wavelet transform that we set 

out to do in this lecture which is filtering and feature extraction using inverse continuous 

wavelet transform. Very often there are many features in the signal that I would like to 

extract and leave aside the remaining features. For this we look at the synthesis equation. 

You may recall synthesis equation from the first lecture on continuous wavelet transform. 

T psi is admissibility constant and what this expression essentially suggests is, yes of 

course this is valid only if the wavelet is admissible. What this expression suggests is that 

we could reconstruct part of the signal by working with a modified CWT. 

What you mean by modification is thresholding CWT. That is what we could do is, we 

could take this CWT and zero out a few coefficients like we did in spectrogram or even 

in periodogram where I showed you how you could filter. Here also, what I could do is I 

could say that the CWT significant only in certain time scale plane, and I am going to 

zero out or threshold out the CWT in the remaining region of the time scale plane. Then, 

reconstruct the part of x of t which is desirable, and this is going to be the basic idea also 

in DWT. So, therefore, this is kind of a curtain raiser for you for signal estimation using 

DWT. 
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So, let us discuss a few mathematical aspects. Let us understand for example what is the 

role of admissibility constant in synthesis? This is one of the questions that were also 

asked in the forums. So, I am going to spend a couple of minutes on explaining why this 



c psi should appear in this equation and why is it that the wavelet should be admissible 

for you to recover x of d perfectly. That is the first question we should look at, and 

second question we should look at is, can we use one wavelet for analysis and another 

one for synthesis. Can we do that? Well, the answer is yes. Then, how does this 

reconstruction equation change and thirdly of course, you can use for feature extraction 

and I will show you an example of that. When I say feature here, it could be oscillatory 

feature also. 
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So, let us have a look at the first question. Why is c psi coming into my synthesis 

equation and why is that wavelet should have a finite c psi? Let us start with the part of 

reconstruction equation ignoring 1 over c psi. So, what have I done is, I have thrown 

away 1 over c psi and I am only looking at this double integral, but if you recall here the 

psi of tau, s is nothing but 1 over route s psi of t minus tau by s which means what is 

happening is the wavelet transform is being convolved with the wavelet. Therefore, I can 

rewrite this double integral as an integral of the convolution of t with psi scaled mother 

wave. So, essentially what we have done is, we have taken one integral and recognize 

that to be convolution and that is what we have done. The next integral is of course over 

scales. Now, what we shall and let us denote this with x tilde of t. So, x tilde and x of t 

only differs by c psi. 



Now, let us take the Fourier transform of this integral. So, on the left hand side I have x 

tilde of omega. This is small error here. This y tilde t should be x tilde of t. Then, by the 

Fourier transform property, so here I am taking Fourier transform of the integral and we 

will switch the order. We will say Fourier transform of the integral is integral of the 

Fourier transform. We can do that under certain mild conditions. Then, the convolution 

becomes a product in the Fourier domain. Here we are convolving with respect to tau 

and therefore, Fourier transform is also with respect to tau. We have made use of the 

Fourier transform properties. 

Now, again recall that the continuous wavelet transforms itself is convolution of the 

signal with reflected version of the wave, right. Therefore, I can write the Fourier 

transform of the wavelet transform with respect to tau as a product of x of omega times 

root s psi star of s of omega. Now, when I put together equations 9 and 10, then I have 

this expression with me, x tilde of omega is x of omega because I substitute for t x of 

omega with the expression with RHS that I have in 10. So, x of omega falls out of the 

integral because it is independent of the scale s. The rest of it stays with the integral. I 

have psi star s of omega, s time of omega time psi of s omega which becomes a 

magnitude square of psi of s omega. Root s times s I have here as s and that cancels out. 

One s I have here. In the end I have integral zero to infinity mod psi of s omega square 

by s ds, and you can quickly recognize that this expression is nothing but my c psi. This 

integral is c psi. So, x tilde, what we have started off with is the integral ignoring the c 

psi, and we have shown that if I ignore the c psi, then I will recover x up to this factor c 

psi. Obviously, to recover perfectly I need to divide x tilde by c psi. That is exactly what 

we are doing. 



(Refer Slide Time: 12:47) 

 

So, it follows that the signal is perfectly recoverable if and only if c psi less than infinity. 

It has to be bounded. If c psi is infinity, then you cannot recover it, right. Recover the 

signal itself. That is the reason why the admissibility constant c psi comes into the 

synthesis equation. In fact, we can also use this derivation to understand the concept of 

the scaling function. Suppose we use only the wavelet coefficients at scales s greater than 

1 in my reconstruction. So, I go back here into this equation 8 or even in the synthesis 

equation that I had in equation 6. I only select scales greater than 1 which means I am 

ignoring all the details below, at scales below 1. Then, what happens to this integral? 

Well, going by the same procedure we can show that then the x hat of omega. Let us call 

that as x hat of omega because x tilde of omega looks at is recovered using all scales. X 

hat of omega is recovered with the wavelet coefficient at all scales greater than 1. Then, 

x hat of omega is x of omega times is integral. If you recall from the concept of from the 

lecture on scaling function that we had, this integral here is nothing but your scaling 

function in the Fourier domain. So, x hat of omega differs from x by this factor phi of 

omega. So, when I use that wavelet coefficient if had scales greater than 1, then I only 

recover that part of x which is the x multiply with phi. So, as if I am filtering x with 

some frequency, with some LTI system whose frequency response functions is phi of 

omega. 

Now, we know already that phi of t access a low cost filters because the phi of omega at 

omega equals 0 is a non-zero quantity. Therefore, I know phi of omega is nothing but the 



frequency response function of low cost filter. Therefore, I can say that x hat of omega or 

x hat of t which is inverse Fourier transform of x hat of omega is nothing but an 

approximation or low cost filtered version of x of t. So, you see the synthesis equation 

can be used to understand both the role of admissibility and the scaling function. 
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Now, let us move on to this second question and then we look at an example. Can I use 

two different wavelets? Why are we even discussing this problem because it turns out 

that this is the key to coming up with an implementable inverse continuous wavelet 

transform algorithm. Can I use a different analysis and synthesis wavelet? First of all, 

why does this idea even come up is, because CWT is a redundant representation of the 

signal. That means I have computed far more coefficients than actually required. So, I 

could pick any subset and I can perform any operation on a subset of this coefficient, and 

I should be able to recover using a different function. That is why I can think of a 

different analysis and synthesis function. In DWT using orthogonal wavelets, the 

analysis and synthesis function have to be identical and that we learnt in DWT. 

So, let us denote the analyzing wavelet with c psi of t and synthesizing wavelet psi tilde. 

Then, the recovery expression that we had seen the synthesis equation now generalizes to 

this integral, where the only difference, there are two differences. In place of psi, I have 

psi tilde and in place of c psi, I have c psi psi tilde. That means, now I have a generalized 

admissibility constant which is also known as two wavelet admissibility constant. What 



is this two wavelet admissibility constant? Well, what this admissibility intuitively this 

means is that the analysis in wavelet and synthesis in wavelet should be compatible. You 

cannot really use some two different arbitrary wavelets, one for analysis and one for 

synthesis. There has to be some correspondence between them and that correspondence 

or compatibility is measured by this c for c psi psi tilde. In fact, when you said psi tilde 

equal psi that is when you choose the synthesis function same as analysis function, then 

you will recover the same condition that we had seen earlier. 
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Now, all that is left is to derive the expression that is practically used in implementing 

the inverse CWT. This is slightly involved topic. Therefore, you may have to pay bit 

more attention, but there is a very nice trick. If you understand the trick, then the rest of 

the story is fairly straight forward. What we have here is a double integral and 

implementing this double integral in practice is a biggest hurdle. We would somehow 

like to reduce this double integral to single integral. That is what we would like to do, 

alright. How do we do that? Well, the trick is to use psi tilde as a Dirac. Strictly speaking 

Dirac is a distribution which has some slight abuse of notation and terminology and 

some slight giving up of technicality will still call it a Dirac function. 

So, I use a synthesizing, Dirac as a synthesizing wavelet. What is an advantage? The 

advantage is this inner integral that I have or you can say whatever integral we have with 

respect d tau that reduces to a point, that is if I plug in this expression for psi tilde into 



this equation 13, then the integral across d tau takes this form. As a result the double 

integral in 13 simplifies to simple single integral over the scales. That is the basic idea 

and normally one uses a complex analytic wavelet in CWT. So, what we have learnt is 

that I can use different analysis and synthesis wavelet, and we use the Dirac function as 

the synthesizing wavelet because we want to make our life simpler, we want to reduce 

double integral to single integral and reduce the computation burden. That is the basic 

essence in inverse CWT. Because we generally use a complex wavelet analytic wavelet 

for CWT, you can rewrite further that expression that we had here that is the moment you 

pluck in this simplification in 16 into the equation in 13, you will have a single integral 

which should have 1 over psi c psi psi tilde times integral 0 to infinity. Sorry, t x of tau, s 

times 1 over s power 3 by 2 ds. That would be the single integral that we would have. 

When you use a complex analytic wavelet, you have to pluck the real version from the 

wavelet transform. That is how you get this expression. In fact, if you are really curious 

on how you get the expression from the CWT computed using analytic wavelets, then 

you can just refer to a very quick three line derivation of this equation of Stephane Mallat 

book. You can still synthesis even if you do not use complex analytic wavelets. You 

should remember the fact because normally we use analytic wavelets we have given this 

expression. Once again here I have c psi delta because now I have chosen psi tilde to be 

delta. So, see wavelet admissibility constant, that has to be computed and that differs 

from wavelet to wavelet. In general, we implement at discretize version of this because I 

cannot compute CWT over a continuum of scales, I would have computed only over a 

grid. 
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Now, if I choose to discretize this linearly that is scale axis linearly, then I would get this 

expression here, right. That is a fairly straight forward expression, but normally one 

would choose a dyadic grade for these scales in which case the expression in 18 is not 

the correct one for implementing the discretize version of this. You will have to assume s 

equals 2 power j and then evaluate ds in terms of j and when I write s equal 2 power j, 

we vary j linearly and therefore, this integral has to be re-written in terms of j and then 

discretised. So, that is the basic difference. If I linearly discretize scale, I can directly use 

an approximate version of 17 as in given in 18, but if I choose a dyadic grade, then I 

have to rewrite 17 in terms of the linear parameter j and then write the discretize version 

of that. That is a basic difference and those expressions are given in the literature in the 

paper by Torrence and Compo and so on. That is what is implemented in Matlab as well.  

Now, the only thing that you have to remember is and also observe that we have used 

and approximation symbol here which means that the recovery is no longer exact. Why 

because we have replaced integral with a summation. In DWT, this is not going to be the 

case because the discretization that we choose for scales will allow us to exactly recover 

x of t. That is the basic difference between performing inverse CWT and inverse DWT. 

Of course, reconstruction error will depend on the grid spacing and this constant c psi 

tilde is available in the literature and can be computed for a specific wavelet. 
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We turn to 2 examples here. In the first example, all I am trying to show you is simple 

implementation of how are things in Mat lab. We have a signal sin mixed sin here, and 

we have generated samples of that. What we are doing here is computing this CWT using 

FFT algorithm and then computing the inverse. So, what we are doing is, we are not 

doing anything to the continuous wavelet transform. We are just computing this CWT 

and then trying to recover the signal. That is all we are doing. We are not performing any 

operation in CWT, no thresholding. 

So, I use Icwtft routine Mat lab wavelet tool box. There is an ICWT version that is to be 

used when you use CWT that is the convolution algorithm to compute or divide the 

transform. This Icwtft assumes that the argument that you are supplying has been 

computed from CWT FT. That is important. These are the two complimentary functions 

and what I am showing you here on the left is the reconstructed version and original 

version. The original version is shown in blue and the reconstructed one is shown in red. 

There is some error as we talked about in the reconstruction, and that error is quantified 

in terms of the route means square error. It turns out to be 1.1 percent that is because we 

have chosen such grid spacing. If I choose even final grid spacing and I would like you 

to just explore that. Go and change the grid spacing. When you compute the CWT FT 

and you will find that you can for finer grid spacing for scales, you can actually get 

lower RMSE. 
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Let us conclude our lecture with example, where we will again take this same example 

sin 8 bi t plus sin 30 bi t, the same signal that we saw earlier. What I show you here is the 

contour plot of the CWT. On the y axis, I have scales and on x axis I have time. Clearly it 

shows me this two time scales that I have in the signal, of course there is smearing of the 

energy as expected and now, what we would like to know is can I extract the sin 8 bi t 

which is one part of the signal or sin 30 bi t which is another part of the signal by 

performing an inverse filtering. What you would technically do is zero out the CWT at 

those scales that are not of interest to you, and only retain CWT for these scales error of 

interest to you. That is technically what you could do and that is what you mean by hard 

thresholding and that is what is achieved by this Icwtft with this IdxSc routine. 
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When you use this option in addition to passing the continuous wavelet transform, by the 

way we have also added some noise here to the original signals, mild amount of noise. 

So, we may be in the process of filtering. We will also get rid of some noise. So, here I 

have the component reconstructed of the high frequency part and high frequency 

corresponds to low scales. So, what I have done is I have looked at this plot and decided 

that I want to construct the high frequency one which is corresponding to the scales here 

and I pick the indices of those scales. How do I pick the indices of the scales? From the 

plot I read what scales are of interest to me and y k underscore cwt has is a structure 

which contains scales field. So, I got is a vector. I pick the indices that correspond to the 

scales of interest to me here for the high frequency, and those turn out to be 7 to 12. 

Those are the vect induces. That is all. 

So, that gets me the high frequency component. Likewise I pick the low frequency 

component. That means, I have to look at higher scales. So, I pick this set of scales for 

reconstructing. As you can see our reconstruction is really very good. Of course, these 

are all academic examples, but this actually shows you how you can extract features 

from cwt. There required few questions on the forum and sent personally to me on how 

you could extract features from cwt. This is how you could do it. You compute cwt and 

then perform certain operations on the cwt or if you want the part of x of t that exists 

over the entire time, but only over select set of scales, then you could use this option, but 

on the other hand if I only wanted that part of x of t. Let us say between 0.4 and 0.6 in 



this scale region, then what I would do is I would really zero out the continuous wavelet 

transform coefficients outside this band of time scale region, and then pass that to Icwtft 

and that could reconstruct that part of features. That is essentially a procedure for you. 
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So, that is it. It was a long lecture, but hopefully a lot of interesting applications for you. 

You can take this application and see whether they relate to the kind of work that you 

been doing or plan to do. In doing so not only refer to this lecture notes, but more 

importantly refer to some of these excellent books by Misiti et al and Torrence, paper by 

Torrence and Compo and of course Mallat’s book, and gratefully acknowledge the 

software package by Grinsted and Moore, and of course the wavelet tool boxes which is 

not listed here. I will put that up in the reference list. And I just want to conclude that we 

have shown is application of wavelets to univariates signal analysis. There are number of 

applications of wavelets to bivariate and multi-variate signals. 

In fact, if you read the top reference, it reads across wavelet and wave coherence, that is 

essentially looking at wavelet analysis of two signals. So, cross wavelet analysis and 

there are these routines available in the free package here as well as of course in the 

Matlab wavelet toolbox that allow you to perform wavelet analysis of bivariate or multi-

variate signals. But because this course is fairly restricted and confined to univariate 

analysis, we have only discussed the applications of CWT to univariate signals. So, that 

is it so that brings us to the conclusion of CWT. In the next lecture that is in 8.1, we set 



out on learning what is a DWT, and how does one computed, and so on. So, see you in 

the next lecture. Bye. 


