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Lecture -7.4 

Scalogram and MATLAB Demonstration 

Part 1/2 

Hello friends, welcome to lecture 7.4 on the unit on continuous wavelet transforms. In 

this lecture we are going to learn what is a scalogram this is a equivalent of spectrogram 

and periodogram with respect to short time fourier transform and fourier transform 

respectively. And also look at how to compute scalogram using the wavelet tool box in 

MATLAB. In the previous lectures we have learnt what is the definition of CWT, how to 

convert scale to frequency, and how to compute the CWT itself. Therefore, this is a 

natural sequel.  

(Refer Slide Time: 00:55) 

 

As I have just said we will first go through definition of scalogram, and then look at how 

to compute this in MATLAB. 
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The scalogram, as I said, is equivalent to that of spectrogram and periodogram, both of 

which are derived from the energy conservation or preservation relations in the 

respective transforms. When it comes to CWT, the energy is preserved according to 

equation 1, where we have the C psi as a admissibility constant, T x as usually see 

continuous wavelet transform. 

Now, if we look at the equation, on the left hand side you have the energy of the signal 

based on the signals representation in time domain. And then, on the right hand side we 

have this double integral. Notice that, the scales run from 0 to infinity, and the translation 

parameter tau runs from minus infinity to infinity. Therefore, the energy density in the 

time scale plane is the, mod T of tau comma S square by S square, because the integral or 

the double integral of this quantity here gives us the energy; of course, barring a factor 1 

over C psi.  

So, strictly speaking, I should have a, 1 over C psi, tagging along with, P of tau comma 

S, but we ignore that because visually the, 1 over C psi, is going to be a constant across 

the time scale plane, and therefore, does not make any difference. However, if you want 

to recover the energy correctly or if you want to compare this with the signals energy or 

that obtained from spectrogram and so on, you have to bring in, 1 over C psi. So, keep 

this point in mind. 



Very often we are interested in the time frequency plane, as we had argued when we 

wanted to convert scale to frequency and so on. So, in signal analysis, the time frequency 

plane is of interest. 

(Refer Slide Time: 02:59) 

 

And, therefore we convert the scalogram which is now the scalogram; the earlier one is 

also called scalogram, but strictly speaking if you look at the literature, scalogram refers 

to the energy density obtained from CWT in the time frequency plane. So, you have to 

convert the expression given in equation 2 to a quantity which is in terms of, tau and 

omega. 

And, how do we do that? Now we go back to our scale to frequency conversion 

expression. We know approximately this pseudo frequency relation, omega equals omega 

c by s, where omega c is the center of the pass band frequency of the wavelet. And, as I 

had mentioned in the unit on scale to frequency, you could replace this omega c with 

another reference omega which could be a peak frequency and so on, but it is usually the 

center frequency. 

Now, when you bring in this relation between, omega and s, and take it back to equation 

1, so, we did not directly substitute in equation 2 per say. We first rewrite equation 1 in 

terms of tau and frequency. So, what is the expression that results when we make the 

substitution? One has to first derive the relation between d s and d omega, as I shall show 

to you on the board. 
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We have this relation, omega equals omega c by s, therefore, d omega is, minus omega c 

over s square times d s. And, as a result, I have, d s over s square as minus 1 over omega 

c d omega, right. And, now we take this relation and plug it into equation 1, as a result of 

which I have the double integral now as, T x tau; s being replaced by omega c over 

omega, so, I am going to evaluate the continuous wavelet transform at omega c over 

omega; times d tau; of course, I have also 1 over c psi, and then omega c coming in; the 

minus sign is taken care in the integral itself; therefore, I have, d tau d omega, right. 

And, that is about it, because you have a minus infinity to infinity, you should be able to 

really not worry about the negative sign per say. So, this now is my scalogram in the time 

frequency plane because the area under this gives me the total energy. Of course, strictly 

speaking, I should also include this, 1 over omega c c psi. That is exactly what we have 

in expression, equation 4. And now, notice that this scalogram is a function of tau and 

omega. 

And again, to reiterate we have ignored, 1 over omega c c psi, in the expression because 

it does not make any difference to the visual appearance. However, if you want to 

recover the total energy you will have to put it back, and then, into equation 4, and then 

integrate that in the time frequency plane. In fact, only if you put back, 1 over omega c c 

psi, into equation 4, you can make it comparable to the results that you obtained, for 

example, from spectrogram or winger ville distribution and so on, because they give you 

the correct energy density expressions in time frequency plane. 



Now, normally what happens is, the raw scalogram, as you have defined in equation 4, 

does not give you the correct comparison between energies at different scales. And, why 

does this happen? That is because at each scale the wavelet has a different width. So, 

when I am calculating the energy density at a particular tau, and, at a particular scale I 

am calculating the energy at a particular tau, the amount of energy that is the value, let us 

say, of the energy density at a particular tau, depends on the width of the wavelet because 

the value is obtained by correlating the signal with the wavelet at that scale, right. 

What is T of tau comma s, or tau comma omega c over omega? It is essentially the 

correlation between the signal and the wavelet. So, let me just illustrate that for you with 

a sketch. So, what I have is that, let us say, I have some signal of this nature, right; and 

here I have time t; and I am going to bring in, a wavelet into my analysis.  

If I choose, if I am looking at wavelet at high scales, that mean I am looking at wide 

wavelets, then the CWT computed in such a wavelet is essentially the correlation, let us 

say, I am standing here this is the current tau that I am looking at; this is where the 

wavelet is centered at, then the wavelet is going to look like this because I am looking at 

a wide wavelet.  

So, what happens is, the T is essentially the correlation between the signal and this 

wavelet. And, because this wavelet is wide it is going to cover a huge portion of the 

signal, and therefore, the number is going to be higher, than compared with the situation 

where I have a narrower wavelet. That is, I am looking at a wavelet now, at low scales. In 

such situations, let us say, I am looking at a very fine scale wavelet or a high frequency 

wavelet relatively, then what happens is, by design of this wavelet, this is going to be 

much narrower than the wavelet at the higher scale.  

Consequently, this wavelet here located at the same center tau, is not, is going to see a 

smaller portion of the signals. So, when the energy calculations are done, it is unfair in 

some sense to compare the energy computed with the wavelet at this scale and the energy 

computed with the wavelet at this scale. So, you want to be fair and therefore, normally 

what is done is we choose a factor of 1 over s to rescale or renormalize the scalogram, so 

that the scalogram computed at higher scales are scaled down to account for the fact that 

this high scale wavelet is able to see a larger portion of the signal.  

And, likewise, the scalogram computed at lower scales are kind of scaled up; they are 

broad on on part with the one that we are computing at high scales. Of course, this is not 



some regress factor here, you could choose some other factor as well, but we have 

chosen 1 over s; you could actually choose some other factor, but essentially that factor 

should bring the, should account for this phenomenon that happens at the high scale 

wavelet see a larger portion of the signal and the smaller scale wavelet see a smaller 

portion of the signal.  

As long as your normalization factories able to account for it, you are ok. Generally what 

is used in literature is 1 over s. This amounts to saying that I am scaling the coefficients 

with 1 over root s, that is what it amounts. I will show you how to do things in 

MATLAB, how to plot the normalized scalogram and the unnormalized scalogram this 

way.  
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So, as we have just discussed, normally one uses a normalized scalogram with the 

normalization factor being 1 over s. And, 1 over s, is essentially omega over omega c, 

once again by virtue of the scale frequency relation.  
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Now, before we really go and learn how to compute this scalogram and plot them in 

MATLAB, let us look at what this scalogram essentially is doing. It is essentially 

spreading or capturing the energy of the signal, not at a point in the time frequency plane, 

but it is capturing in a box. Normally this boxes are called Heisenberg boxes because the 

box itself comes into picture because of the uncertainty principle or the duration 

bandwidth principle. And, because again of the parallel between the duration bandwidth 

and the Heisenberg’s uncertainty principle, this boxes are called Heisenberg boxes.  

What are the widths of this boxes in time, along time and frequency axis? Well, to 

determine that let us start with a wavelet. And, normally because we use analytic 

wavelets we have restricted this discussion to analytic wavelets. You can, of course, 

extend this discussion to real wavelets as well. So, let us assume that we have an analytic 

mother wave which is centered a t equals 0. It is a fair assumption. And, let us assume 

that it has a center frequency omega c.  

And, further, let us denote the duration and bandwidth of this analytic mother wave by 

sigma square t bar and sigma square omega bar. Now, what you see in equation 6, 

essentially that is the expression for sigma square t bar and sigma square omega bar; or, 

they directly follow from the definitions of duration and bandwidth that we have learnt in 

unit 4.  

Notice that, we have assumed the wavelet to be located at 0; that is, in the sense, center 

of wavelet is 0 in time; therefore, we only have a t square here. Now, when you consider 



the mother wavelet, that is what we would like to know, because what happens is, the 

smearing of the signals energy is determined by the smearing, the energies spreads of the 

wavelet in time and frequency which is, which are essentially given by the duration and 

bandwidth of the wavelet.  

Because the wavelet is a scale and translated wave, and then there is 1 over root s factor, 

you will have to recompute the duration of the wavelet, but the expression for the 

duration comes from the definition itself. So, I have sigma square t as integral minus 

infinity to infinity, of t minus tau square. Remember, that the wavelet is centered at tau, 

whereas the mother wave is assumed to be centered at 0. Therefore, the center time or the 

meantime is tau.  

And, I have mod psi tau comma s t square; all I have to do to get to the answer, that is as 

s square time sigma square t bar, I have to substitute for the expression for psi of tau 

comma s which is 1 over root s psi of t minus tau by s, and do a change of variables; a 

very simple 1 or 2 step derivation to arrive with the answer. So, I leave that to you. It is a 

very simple exercise. So, all you have to do is replace this with 1 over root s, psi of t 

minus tau by s, and do a change of variable and we should be able to get this expression. 

We have qualitatively talked about this when we were talking of the scaling properties of 

fourier transforms in unit 3.  

And then, we have sigma square omega; again, falling out of the definition of the 

bandwidth. And, I have here omega minus omega c over s. Remember, when I scale the 

mother wave by factor s, the center frequency shifted to omega c over s; therefore, I have 

to use that here in the definition psi, the big psi of tau comma s of omega, is the fourier 

transform of the wavelet now. 

And, once again what you do is, you first derive the relation between the big psi tau of, 

tau comma s of omega, and the big psi of omega which is the fourier transform mother 

wave, using the scaling property of the fourier transforms. We have done this in deriving 

the f of t algorithm for computing CWT. So, you should be able to get that relation there 

as well.  

Just do that, substitute that here, and then again do a change of variable. You should be 

able to show that essentially your sigma square omega is sigma square bar omega over s 

square. That means, now what is happening is as expected when I am looking at high 

scale wavelets that is wide wavelets, they have larger duration than the mother wave, but 



then narrower bandwidth compared to the mother wave. Likewise, for high frequency 

wavelets, that is wavelets at small scales, they have much smaller duration than the 

mother wave, but a wider or a larger bandwidth than that of the mother wave. 

In other words, what the wavelet is doing to the signal energy is, it is taking the signal 

energy and spreading it, like you have seen on the board earlier. It is analyzing a large 

portion of the signal if you are using a wide wavelet, or it is analyzing a smaller portion 

of the signal if you are using a high frequency wavelet. So, it is spreading the energy 

nevertheless, it is not analyzing signal exactly at a frequency or a time point; it is spread 

over time and energy.  

And, this signal energy is therefore smeared in this box, Heisenberg box of widths given 

by s time sigma t bar, and it is a 1 over s times sigma omega bar, along the time and 

frequency axis respectively. So, therefore, you should not be able to see the ideal time 

frequency energy density but a smeared energy density in the time frequency plane, that 

is anyway expected by virtue of the duration bandwidth principle. So, what we shall do 

now, is learn how to compute the scalogram in MATLAB.  


