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So, with this we have the family of wavelets in general, where I have dropped a subscript 

naught, psi naught. In general we say psi of t is a mother wave, and psi subscript tau 

comma s, given by this expression, is the generic child of the mother wave, and the entire 

family that we obtain, is called a family of the wavelets. Once again tau is a translation 

parameter s is a scaling parameter. Just to recap, the scaling parameter controls the 

compression or dilation state. If you are looking at values of s greater than one, then the 

child is in dilated state, or in a dilated shape, and that acts as a low pass filter, as we have 

seen earlier and something that we will again learn in this lecture. And when you choose 

values of scaling, parameter between 0 and 1, then the child is in a compressed state, 

which essentially allows us to, extract the high frequency components of the signal; that 

is it access a high pass filter. Some terminology when the mother wave is zero or the 

child is also zero outside a finite interval, then this mother wave or the wave is said to 

have a compact support. And when a function has a rapid decay, we say it is a localized 



in time. So, does not have a compact support, that is it does not exactly go to zero in 

finite term. 
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Some examples of mother waves, as you can see here, we have the Haar wavelet on the 

left top, which is also historically the first noon wavelet proposed by Haar. It has of 

course, discontinuous nature. And we have Mexican hat in the real part of Morlet, 

because Morlet waves are in general complex wavelets, it is showing in a real part. Both 

belong to the Gaussian family; Mexican hat and Morlet wavelet. Then you have 

Daubechies wavelet which has some nice properties, that will discuss in the contest of 

the discrete wavelet transforms. And then you have what are known as simulates, which 

are similar to the Daubechies, but different phase characteristics, then you have Meyer 

wavelet transforms.  

So, each wave although I say wavelet, these are mother waves; each wave as you can see 

has different characteristics, and depending on what you want to analyze in the signal 

you choose a particular wavelet. As an example if I want to deduct discontinuous, very 

short, discontinuities like one is see in Haar, then Haar wavelet is a ideal choice for that. 

but if I want to deduct regularities, then I choose wavelet that is more regular; that 

means, most move then so on. And I should mention in passing that two of this function; 

that is Mexican and Morlet wavelet, do not do not satisfy the so called zero average 

condition, that is generally required of a mother wave. We have not yet imposed that 



conditions until now, but we will see why that condition becomes necessary in the next 

couple of slides. 
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So, having understood how to intuitively arrive at the wavelet starting with the sinusoid 

function. We will also now understand, how intuitively one can drive the synthesis 

equation in the case of wavelet analysis, starting with the Fourier synthesis equation. So 

at the top in equation 4 you have the Fourier synthesis equation, where F is a cyclic 

frequency. The upper case x as usual Fourier transform. What I have done is, re written 

this expression, using the relation between the scaling parameter on the frequency. So, I 

have written s equal f naught by f or f s f naught by s, and also replace this d f 

incremental variable in frequency with increment able variable in scaling parameter. And 

I replace e to the j with the scaled wave. This is for the case when this mother wave as 

psi of t is not localized in time, but for functions at a localized in time, we need to bring a 

second dimension, and that is why the synthesis equation, now involves in equation 5, a 

second dimension which is the tau. That is difference between the equation 4 and 5 is in 

equation 4 psi of t and psi s of t are spread infinitely in time, but the movement I require, 

or I bring in localization in time nature to psi of t.  

Then I have to travels along time also to recover x of t, in addition to travels in along the 

frequency access. Notice that I am taking the real part, whereas, in equation 4 and 5, 

where as in the first expression which is the Fourier synthesis equation there is no real 



part, because frequencies are allowed to take parameters, values from minus infinity to 

infinity. And since we have restricted ourselves to positive values of scaling parameters, 

we pick the real values of this, and there is a two introduced, so as to be able to take care 

of the negative side of it. So, its all intuitive one, but fairly consistent the math. Now the 

other difference between equation 4 and 5 is; in equation 4 this x big x is only a function 

of this scaling parameter x, but now it is in equation 5, it is a function of the local 

parameter in time tau, because now this size are also function of tau. To a general 

wavelet like we did not deriving the wavelet atom. Now the general mother wave, which 

is not necessarily sin wave. When we move to the general case that is when we looking 

at the general reference function on the mother wave, and of course, the wavelets, which 

have general frequency f naught, then the synthesis equation in 5 takes the form given in 

equation 6. Of course, I have skipped all the derivation and I do not think it really 

necessary at this movement. Of course, we can always give you the suitable references. 

What is more important here, is the string of developments that we have gone through, 

starting with the Fourier synthesis equation, then introducing the scaling parameter there, 

where replace frequency with scales, and then restricted the width of the sinusoid in time 

and then we have generalizing that to function with center frequency f naught; that 

means, now their also not necessarily localized in frequency as a sin waves. That is more 

important then actually worrying about how to derive this equation. 

So, equation 4 is the Fourier synthesis equation. Equation 5, is where we have introduce 

scaling parameter and the translation parameter. And then equation 6 is a general 

version, that we normally see in wavelet analysis, which has offend presented as a 

recovery equation, or reconstructed equation. notice that in this equation I have one over 

c subscript c, and the expression for this constant, so called admissibility constant, is 

given again here in equation 6 on the right hand side, where this c of omega is a Fourier 

transform of the wavelet. Although I have written c star of omega time c of omega, is 

essentially magnitude square of the Fourier transform of the wavelet. Rather than simply 

worrying what is this expression here ,you should ask when does this c subscript c exit, 

And if you look at this expression it is fairly clear, that as omega approaches zero, you 

may have an issue, unless the c of omega, the magnitude square of c of omega 

approaches zero, more rapidly than omega itself. And that translate to what is known as a 

admissibility condition for a wavelet, or for the mother wave, which in fact translate to 

the so called zero average condition. the reason being I want the c of omega that is 



Fourier transform of the wavelet, to go to zero as omega approaches zero; that means, I 

want the Fourier transform of the wavelet to be zero at omega equal to zero to be very 

clear. 

Now whenever the Fourier transform of a function is zero at zero frequency, then its 

average should be zero, because we know from the expression for the Fourier relation, 

that the value of the Fourier transform at zero frequency is nothing, but the average value 

of the function itself, and for continuous functions average is simply integral minus 

infinity to infinity c of t d t. So, that is the famous zero average condition that is 

presented. On the zero average condition can be looked at in different ways, and we will 

talk about it soon. So, now, just to summarized in this line what we have done, we started 

from the Fourier synthesis equation, and arrived at the synthesis equation for the signal 

in terms of this wavelet transform of the signal, which is denoted by T subscript x and it 

is a function of tau, s. Compare this with the short term Fourier transform, which was the 

function of tau comma omega or z; a frequency variable. Now, it is a function of tau, 

scaling parameters. 
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With this background, and with this prelude, we now present the continuous wavelet 

transform. Of course, as a said earlier much of what we have done, that is starting from 

the Fourier atom arriving at the wavelet atoms, starting from the Fourier synthesis 

arriving at the synthesis equation, is not found in many text. So, this is somewhat new to 



you probably. If you find it bit uncomfortable, you can straight away look at the 

continuous wavelet transform as yet another transform, but those derivation have really 

helpless understand. A very key point which is the transition from frequency to scale, 

and another key point connection between scale and frequency. This the wavelet 

transform, that we have just seen in equation 6. It is again here has a same shape as a 

regular transform equation, I have integral x of t c star of tau comma s of t d t; that 

means, we do anticipate c to be complex value.  

In fact, that is true we can have wavelet set or complex value, why not. In fact, when we 

start when we will go back to the derivation, we said denote c of t as a complex 

exponential. So, it is possible that c is complex value. Of course, will talk about under 

what situations we will use complex wavelets, and in what other situations we will use 

real wavelets and so on in a different lecture. All I have done here is, I will just 

substituted to arrive at the last integral here in equations and just expanded the wavelet 

expression. So, it is an inner product between the signal x and the wavelet itself, 

normalized in a product. The normalization factor being the energy of the wavelet itself. 

So, the energy of wavelet is normalized one, it is simply the inner product itself.  

So, the first useful interpretation of this continuous wavelet transform; like in Fourier 

transform in short term Fourier transform, is that it is a correlation coefficient, between 

the signal and the wavelet at that location tau and that is scale s. the scaling s remember 

controls, how why the wavelets is, or how narrow it is, and the choice of mother wave 

will determine the shape itself. So, the basic shape is decided that a choice of mother 

wave, and scaling parameter will then control whether you are looking at a, why window 

or a narrow window. Of course, translation parameter will determine at what portion of 

the signal you are situated. The second point is, as we have mentioned earlier the wavelet 

necessarily satisfies an important zero average condition. Now as I have even mentioned 

earlier, there are a few exceptions to this, where the integral does not turn out to be zero, 

but nearly zero. An examples are; Morlet wavelet and Maxican hat wavelet.  

In such cases perfect recovery of the signal it is not possible, and I show this to you in a 

next lecture when you look at some mat lab based examples. Whenever a wavelet 

satisfied this zero average condition, perfect recovery is possible; that is exactly what 

this synthesis equation also says. And the third point is, that we have use a same wavelet 

in synthesis equation and the analyzing equation. What we mean by analyzing equation 



is, equation seven, where we are computing the transform. They need not be the same, I 

could use different functions; of course, which are related, for the purpose of recovery 

and for the purpose of analysis, and we look at this more in details when we discuss 

discrete wavelet transform. For the movement we have chosen this synthesizing function 

to be the same as see analyzing function itself that is we use a same function for 

analyzing and recovery. 
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The last point that I want to make in this lecture, is that the continuous wavelet transform 

can be interpreted as a filter, and this is very important, because this as consequences in a 

understanding of d w t, the implementations of c w t and so on. Of course, you can 

always view c w t at a time frequency analysis tool, but this interpretation helps as nicely 

switch over to d w t and this signal processing interpretation. To see the filtering nature 

of c w t, all we have to do is rewrite the wavelet transform is a convolution of x with of 

function c bar which is nothing, but a reflected version of the complex conjugated of a 

wavelet. So, does not much difference between c bar and c. Once I write this a 

convolution it is now obvious, that the wavelet transform act as a filter, because I know 

convolution, all convolution operations are filtering operation from leaner system scale. 

 The filter here being c bar, but it is not different from the wavelet, it is only a reflected 

version. So, for all practical purposes you can treat a wavelet itself as a filter. In fact, it is 

an impulse response of the filter so to speak, because if you recall leaner system theory, 



the output of the filter is the input convolves with the impulses response of the system. 

And the most important feature of this filter, is that the duration and bandwidth change 

with this scale, unlike in the short time Fourier transform. That is if I look at the duration 

of the wavelet well square duration, then it is related to the duration of the mother wave 

through the scaling parameter s. And the bandwidth of the wavelet its one over s times 

the bandwidth of the mother wave; that means, something that we have seen already, as a 

stretch the bandwidth becomes narrower, but the duration becomes longer, and as 

compress the vice versa happens . 
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This is something that you have seen before. Again this is an illustration of the point that 

figures mention. At the center we have this reference function that we have been 

speaking off mother wave, whose magnitude of the Fourier transform is shown here. 

This is a representative of the energy, spectral density of the mother wave in a frequency 

domain, and it has some finite bandwidth. When I stretch that is when I look at scaling, 

when I use the scaling values greater than one. in particularly I use scale value two here, 

then it the mother wave; obviously, becomes wider. So, the child is wider, but the 

bandwidth is narrower. What this means is, if I analyze the signal with this child with this 

dilated way, then I will miss out on the local features in time, but I will get very nice 

localization of the energy in the frequency. In which frequency band, in exactly this 

frequency band to the left of the reference line that I have mother wave; that is the center 

frequency of this dilated one, is to the left of the center frequency of the mother wave. 



Obviously, because center frequency of the child is f naught by s; that is the center 

frequency of the mother wave by s, and same argument now applies to the compressed 

wavelet as well. When I use a compressed wavelet, then I am able to capture the local 

features in time, but then I will have more smearing of the energy in frequency, relative 

to that of the mother wave. So, everywhere there is a reference function that we are 

looking at. So, essentially what we are doing is, if you think of mother standing at this f 

naught in frequency domain, then to the right it has children, which act like high pass 

filters, and the left it has children which act like low pass filters. And this partitioning of 

the frequency into the high and low frequency regime, understanding of this is very 

important, later on when we talk of, as concept of a scaling function; of course, in a 

different lecture. 
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And I would like to conclude this lecture with the comparison of the short time Fourier 

transform versus the continuous wavelet transform. So, we have seen this figure earlier, 

the left figure in a contest of short term Fourier transform is to how, the bandwidth 

remains same across all frequencies, for the short term Fourier transform. Now for the 

continuous wavelet transform in case what is happening is, by design; that is a beauty 

here, by design when I choose a wide wavelet, its bandwidth as you have seen. Here is 

restricted to the low frequencies and it has a very narrow bandwidth. So, come back here 

and see, that the wide wavelet always concern itself to the low frequency components. 

And a compress wavelet is always worried about the high frequency components. 



Whereas, in short term Fourier transform, the window width fixed, and I travels along 

the entire frequency access using the same window in other words what is happening is, 

that I search for all frequency components, with this window in short term Fourier 

transform. Whereas, with the continuous wavelet transform the movement I choose a 

particular wavelet at this scale, it automatically figures out what frequency components 

you should search for in the signal, and that again is enable by this single scaling 

parameter s.  

So, in effect what I am doing is, I am controlling, or I am travelling along the entire time 

frequency plain, using this single scaling parameter. Of course, a translation parameter to 

travels along the length of the signal. That time together, the filtering and the time 

localization. Filtering in frequency, frequency localization and time localization is 

missing in short term Fourier transform. The tiling here shown at the bottom, explains 

the same point that have been making until now. The short term Fourier transform, is 

equivalent to passing the signal through a bunch of band pass filter which have same 

bandwidth, regardless of where you are standing in the frequency access. Whereas, with 

wavelets, here I am showing for what is known as a dyadic wavelet tiling, you will 

understand this when we talk about the d w t, but for all dyadic means powers of two, but 

I am only showing you how as you change scales in powers of two, the frequency and 

the time localization is vary. When you are looking at low frequencies, you are using 

wide windows, and when you want time localization, nice time localization when you are 

working in the high frequency regime and vice versa. So, as you move up the high 

frequencies the nature of the tiles changes, so it rearranges itself according to the 

duration bandwidth principle. Both short term Fourier transform and wavelet transform 

respective duration bandwidth principle, but it is the knob or the handle that you are 

using which makes the big difference. 
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With this we come to a close. Of course, this section has been fairly theoretical, but it is 

very important to understand, the points that we have made in this lecture, so as to be 

able to move forward. In the next lecture we will learn what is known as a Scalogram, 

and also look at the few mat labs based examples on, how to generate wavelets, and how 

to compute the continuous wavelet transform, and how to compute the Scalogram, and 

will; of course, look at this with the few examples. So, hope you have enjoyed the 

lecture. See you in the next lecture. 

Thanks. 

 


