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Lecture – 7.1 

Continuous Wavelet Transforms 

Part 1/2 

Hello friends, welcome to the first lecture in the unit seven on continuous wavelet 

transforms. In unit six, we looked at Wigner Ville distributions quite a bit in detail and in 

the unit prior to that we looked at short-time Fourier transforms. Now, we move to one of 

the central topics of the course, which is the continuous wavelet transforms. Of course, 

you should keep in mind the last lecture. 

In the previous unit where we said, that spectrogram, scalogram and the Wigner Ville 

distributions are a part of this long chain and we have studied this spectrogram and 

Wigner Ville distribution, now it is time to study the scalogram. In this lecture, however, 

we shall not study the scalogram,,, but we will build the foundations for arriving at the 

scalogram by studying what is known as continuous wavelet transforms. Of course, 

wavelet transforms are very popular,,, but what we will do is, we will slowly build theory 

and I will give you an introduction to the continuous wavelet transforms in a manner that 

is not seen in many text books. 
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Typically, one would see the transforms equation first and then the synthesis equation or 

the reconstruction equation. But if you recall, when we reviewed Fourier transforms and 



even short-time Fourier transforms, we had mentioned, that it is important to begin any 

transforms with the synthesis equation first. Therefore, that is the strategy that we shall 

adapt and provide an intuitive way of arriving at the synthesis equation and then write 

the expression for the continuous wavelet transforms. 

But before we do that you should keep in mind that wavelet transforms work in the so 

called time-scale plane unlike the short-time Fourier transform and the Wigner Ville, 

which operate in the time frequency plane. But we can still bring the wavelet transforms 

back into the time frequency plane by studying the connections between scale and 

frequency and that is what we shall begin with today, and then move on to studying the 

synthesis equation, learn the definition of continuous wavelet transforms and conclude 

the talk with filtering interpretation of the CWT. 

The talk is going to be a bit heavy on a mathematical side. So, you may have to read and 

watch this lecture carefully and probably listen to it more than once. 
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So, as we have said just now, that wavelet operates in the time-scale plane,. So, we are 

moving from the time frequency plan to the time scale plan when it comes to wavelet 

analysis,,, but fortunately we have a connection between scale and frequency. Therefore, 

we should be able to switch back and fourth between these two domains. However, an 

important question, that arises is, why should I even consider this. So-called scale, what 

is this scale, because we have looked at the scale briefly when we were studying the 

properties of Fourier transform. We know, scaling corresponds to stretching and 



compressing and so on,,, but why should I look at scale? 

Now, when you look at signal analysis recall, for example, a short-time Fourier 

transform, what we are interested in is the localization of the energy in a time frequency 

plane. And in short-time Fourier transform, we achieve this by slicing the signal using a 

window function and then, we move along the frequency axis, as we do in the Fourier 

analysis. 

Now, unfortunately what happens, as you have seen in short-time Fourier transform is, 

once we decide on a window length, then we are not going to change it during the entire 

course of analysis unless we choose another window of different length. So, once we 

choose a certain window length, the duration bandwidth principle tells me, that there is a 

limitation on my ability to resolve or localized energy frequency domain. So, if you 

choose a wide window, then in time, of course,,, then I will be able to localize energy 

nicely in frequency. And if I choose a narrow window. So, as to be able to capture short 

lived features in the signal, then the energy localization in frequency becomes very 

broad. 

So, what happens in short-time Fourier transform is, a lot of book keeping is necessary. I 

have to try windows of different lengths and capture different features of the signals. 

However, in a lot of realistic situation, the short-lived features are high frequency 

components, that is, they have high frequency content and the long lived features, which 

persist throughout or typically, the low frequency components of a signal. Of course, this 

is not the scenario all the time,,, but a lot of time this is the situation, then it will be nice 

to be able to adjust the window, that is, the duration of the window and the bandwidth as 

I move along the time and frequency plane. The scale parameter allows me to do that. 

We have seen this when we were studying the properties of Fourier transform. We have 

seen, when I stretch a particular signal, then its duration is increased,,, but 

simultaneously the bandwidth decreases. And when I compress the signal, then the 

duration decreases,,, but the bandwidth increases. So, if I can have a handle, a kind of a 

knob, that will adjust both the duration and bandwidth. So, as to suit signals, which have 

shortly high frequency components and long lived low frequency components, that 

would be really great and that knob is a scale, which is missing in short-time Fourier 

transform. 

In short-time Fourier transform, you will really have to be play around with two knobs 



where you adjust the window length and then, you go ahead and determine the frequency 

content and again try another window length and determine the frequency content and so 

on. So, you have to play around with two knobs, whereas, here we have a single knob, 

which is a scale parameter that will allow me to adjust the duration and bandwidth 

simultaneously. 

In the language of signal processing, particularly filtering, we have seen, that the short-

time Fourier transforms for a fixed window length acts as a band pass filter with fixed 

bandwidth throughout the time frequency plane. We shall realize shortly, that the 

introduction of scaling parameter I will be able to generate a series of band-pass filter, 

which will span the entire time frequency plane,,, but with a very nice feature. As I move 

in the high frequency regime, the bandwidth increases, allowing me to use narrow 

windows. And as I move to low frequency regimes, the bandwidth decreases allowing 

me to use wide windows and so on. So, this is probably the core message or one of the 

core messages of continuous wavelet transforms, that is, as far as signal analysis is 

concerned. 

If you look at image analysis, there is no mention of the word frequency,,, but rather you 

hear the term resolution. We talk about image resolutions and finer resolutions and 

coarser resolutions and so on. Likewise, we can talk of coarser scale and finer scale and 

so on and a classic example is that of geographical map. Even if you were to recall the 

use of Google maps and so on, or any other map from any other software provider, you 

will find, that as you zoom in, you get more details. So, you are actually going at, going 

at, looking at a map at finer scales and when you zoom out, you get a coarser picture. So, 

then we say, that the map has been drawn at a lower resolution or a coarser resolution. 

So, there we are talking about the connections between scale and resolution. 

Again, we have seen this earlier scale and frequency have an inverse relation and so, do 

scale and resolution, right. If I, lower scale would mean very fine resolution and higher 

scales would mean poorer resolution; that means, coarser images. 
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Primarily, in this course we have been focusing on signal analysis. So, therefore, , we 

will talk about the relation between scale and frequency. Before we look at that let me 

tell you also again a point that I made earlier. Typically, when you look up texts on 

continuous wavelet transforms, you will see the wavelet transform expression provided 

upfront,,, but what I would like to do is present this synthesis equation first and part of 

this material is being inspired by, is inspired by the material, by the book or the 

presentation in the book by the ((Refer Time: 09:39)) on time frequency analysis and 

therefore, you can also look up the particular chapter in the text to get more details. 

So, what we shall do is we will begin with the Fourier transform and rewrite the sinusoid 

symptoms of the scaling parameter. So, that I see the connection between scale and 

frequency straightaway and then, we will restrict the width of the atom. We call this as 

atom now because it need not be a basis function necessarily. Atom essentially means, 

the analyzing function. And then, introduce a translation parameter because I am going to 

restrict the width of the analyzing atom, I should be able to traverse along the length of 

the signal. So, we will develop CWT in a stepwise,,, but intuitive fashion. 
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So, the first step, as we have just noted, is to observe the connection between scale and 

frequency. So, consider these two basis functions or the complex sinusoid that we used in 

Fourier analysis, which are sines of two different frequencies, all are chosen sines, the 

discussion pretty much applies to cosines as well. So, there is no loss of generality here. 

Assume, that F 2 is greater than F 1. And now, what we shall do is, we shall rewrite F 2 

as F 1 over s. See, there are two ways of looking at F 2 being greater than F 1, I can say, 

F 2 is F 1 plus delta F. So, that is an additive relation. Here, I am introducing a 

multiplicative relation between F 2 and F 1, that is the prime difference between what we 

have been seeing earlier until now and what we have seen at this moment. So, we write F 

2 as F 1 over s, which is kind of a multiplicative relation,. So, that if s is less than 1, then 

F 2 is greater than F 1. And since in this example F 2 is greater than F 1, s is indeed less 

than 1. We shall assume for the purpose of discussion, that s is greater than 0. 

Then, what happens is, I can rewrite the second signal, which is sine 2 pi F 2 t as sine 2 

pi F 1 over s times t. And the trick here is to shift this 1 over s on F 1 onto the time 

variable. So, that I rewrite this as sine 2 pi F 1 t over s as a result of which I immediately 

see this, nothing,, but x 1 evaluated at t over s. 

So, very easily I am able to see, that two sine waves of different frequencies are nothing,, 

but scale versions of each other that is the prime message that you should take from this 

example. Until now, we have been now looking at these two sines as sines of two 

different frequencies separated by additive relation. 



Now, we are looking at a scaling relation. Clearly, when s is less than 1, F 2 is greater 

than F 1, which means, whenever the scaling we call says, the scaling parameter, 

whenever the scaling parameter takes on values less than 1, I am generating sinusoids of 

higher frequencies with respect to F 1. 

So, now we need a reference point that is another second key point that you should keep 

in mind. One, we have introduced a multiplicative relation; two, we are looking at a 

reference signal now. If I keep the reference signal as F 1, then F 2 is a scale that is a 

sinusoid of frequency. F 2 is a scaled version of x 1 with this scaling parameter taking on 

values less than 1. Of course, it follows, that if I choose the scaling parameter greater 

than 1, then I generate scaled version of this x 1, which have frequencies lower than F 1. 

So, F 1 acts a reference. In general, if I have any reference signal as F naught, then any 

other sinusoid of a frequency different from F naught will be a scaled version of this 

sinusoid with frequency f naught, the scaling parameter, a parameter being F naught over 

F. 

Now, we can say, that the scale and frequency share an inverse relation. So, the simple 

example really brings out the connection between the scale and frequency in a nice way. 

Now, if you further generalize this idea where we are not dealing with sinusoids, I am 

dealing with some arbitrary function and I am looking at the scaled version of that 

function, then this scale version of this function will be related to the frequency. Now,,, 

but we are talking about center frequency. So, the reference function has a center 

frequency f naught and now you can say, that the scaled version has the center frequency 

f. So, you can see, that the center frequency of the scale version is center frequency of 

the original function, that is, we call as a mother wave in a wavelet analysis divided by s. 

So, the key is now, that there is a center frequency scale and frequency share an inverse 

relation,,, but this proportionality constant depends on the reference signal that you 

choose, that is the main point, ok. 
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Now, from the previous example we have some idea of how to construct the wavelet 

atom. We will start with the sinusoid. So, let us say, I have a sine wave of frequency F 

naught. I am going to scale it first and this, we call this scaled function as a child and the 

reference signal as a mother sine, we denote, as is a convention, we will denote the scale 

with one subscript s. 

Now, we have 1 over root s coming in a, appearing in front of this e to the j 2 pi F t. This 

1 over root s is essentially to preserve the energy of the signal, that is, the energy of the 

child signal or the scaled signal should be same as the energy of the reference or the 

mother signal. Why does this 1 over root s appear, I will just show that to you on the 

board. 
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Suppose I look at psi t, which is the reference signal, then its energy by definition, if you 

recall unit 2, we had given definition for energy that is the energy of the mother wave or 

mother function. And if I look at this scaled signal, its energy is similarly given by this 

expression. We want both to be identical, right. We know, by definition, this scaled 

function of the child is simply related to the mother function through this relation. 

Now, suppose I assume, that there is a constant C that I have to introduce. So, that the 

energy of the child function should be the same as the energy of the mother function. 

Then, let us substitute this in expression for the energy of the child there and I have C 

square psi t of s mod square d t. And of course,,, here the limits run from minus infinity 

to infinity because we are doing a theoretical analysis. 

Now, I can introduce a dummy variable t prime, which is t over s. So, that I can see 

clearly, that d t is s times d t prime. As a result, I can write this integral as minus infinity 

to infinity c square. I have s square, sorry, s time psi of t prime square d t prime. Now, I 

want, this t prime is a dummy variable,. So, you should not get carried away with this 

dummy variable. We want this expression to look exactly like this to work out to this 

expression. Therefore, I choose C square as 1 over s, C is 1 over root s. Since we are 

working with we assume, that we work with positive value of s, it suffices to have 1 over 

root s otherwise you would have 1 over root modulus s. So, this shows why this one over 

root s is necessary in front of in the expression for the child function. 

Now, having cleared that point, now we generalize this idea to a, to a reference function, 



some reference function to center frequencies f naught. So, now, we started from sine 

wave and moving onto functions, which have center frequency F naught. So, therefore, 

they are not perfectly localized in frequency, they are localized in frequency,,, but not 

perfectly like the sinusoid and this localization of energy is centered around F naught, 

which is not equal to 0. 

Further, we shall demand, that this reference function have finite width in time. Now, 

that is because we want to do, we want to get the local features of this signal in time. So, 

I am choosing a mother function, that that does not look like a sine wave,,, but as a finite 

width in time. In some special cases, this mother function may have this characteristic, 

that it does not have a finite width,,, but it rapidly decays in time like a, it is like a 

Gaussian signal and. So, on. Modulate waves and Mexican ((Refer Time: 19:38)) waves 

have these characteristics. 

Regardless of this, again we have the child function of this scaled function as 1 over root 

s psi naught of t over s. So, in step 1, we have sine wave; in step 2, we have a general 

function of finite width, that with center frequency F naught, which is not equal to 0. 

Now, because this new function, that I am looking at and its children have all finite 

width, I need a translation parameter. So, as to analyze the full length of the signal. In the 

case of Fourier analysis, I did not need these translation parameters because the sine 

wave exists for infinitely in time. So, I do not have to worry about moving the analyzing 

function across the length of the signal. But now, the analyzing function is of finite 

width, therefore, I have to move this manually like I do in short-time Fourier transform 

and that is achieved by introducing this translation parameter tau. As a result, I have now 

the. So, called wavelet atom,. So, to speak. We have psi subscript (tau, s). 

Until step 2, we used only the scaling parameter of the subscripts,,, but we have 

introduced the translation parameter, which will allow me to move, travel along the 

length of a signal. So, I have now 1 over root s psi naught of t minus tau by s and as we 

have already mentioned we will restrict ourselves to positive scales and finite scales. 

So, started with the sine wave, generated scale versions of it, though scale versions are 

no different from the sinusoids that we have used in Fourier analysis,,, but the two prime 

changes, that we have made are one to generalize that idea to a, to a function, which has 

center frequency f naught. It is not perfect sine wave and that it has a finite width, right. 


