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Lecture — 6.7
Cohen'’s class and Ambiguity Functions
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Lecture 6.7 fie

Objectives

» Revisit Cohen's class using ambiguity functions

» Smoothing the WVD and filtering the ambiguity functions
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Welcome to lecture six point seven. This is actually a follow up lecture of lecture six
point six where we introduced Cohen's class of distributions. What we are going to do in
this lecture is to revisit Cohen's class using ambiguity functions. We talked about this,,
but now it is time to look at the mathematical definition and essentially, we will ask how
this smoothing with the Wigner-Ville distribution, what it means in the ambiguity
domain. In fact, now we are going to work in the nu, s that is Doppler and delay domain
instead of the time-frequency plane, that is the central idea here. And we will show, that
is, smoothing the Wigner-Ville is nothing, but in fact, waive waiting it should read the

filtering as actually waiting the ambiguity function appropriately.



(Refer Slide Time: 01:05)
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Recap

Crz(7,6;0) = // W' €)0(r =16 =€)dr' de' = W(r,€) xx0(r,€) : (1)
L |

The class of distributions can also be written as

Cez(n, & f) = /‘/‘/('J"("‘Y]f(u..s');r (l/ - %)J" (I' - ;) ¢ % ds dt! dv (2)

where f(v, ) (also known as the weighting or the parametrization kernel) is such that the smoothing
kernel 0(r,€) is its 2-D FT.

0(r,&) = [ | flv,8)e!™ %) dsdv
l") (. // (v,8)e ds dv
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Just to recap the Cohen's class is, either a convolution in the time-frequency plane as |
have given in equation 1 here or evaluating this, generalize Wigner-Ville distribution
with the help of this weighting or the parametrization kernel f and this f is a function of
(nu, s). And we said earlier, nu is the Doppler and s is the shift or the delay.

And what we are going to do in a next few slides is talk about this nu, s plane, where we
will introduce the ambiguity function. And as usual, as we had before the relation
between the smoothing kernel in time-frequency and the weighting kernel is through this
two-dimensional Fourier transform where it is inverse with respect to one-dimensional

and forward with respect to another dimension.

(Refer Slide Time: 01:56)
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Ambiguity functions

The convolution operations in Cohen's class can be nicely interpreted using what is known as an ambiguity
function, that was introduced by Woodward (1957) in radar signal processing.

For any signal x(t), the (narrow-band) ambiguity function (AF) is defined as
S D (PTIRCA D (YA Y 7 fl— LA DS PR W (PPN
Au(u,s)—/m(l +2)1 (t 2)(. dt /x(n +2)r (0 2)(. i ()

» The variables s and v are known as the "delay” (shift of the reflected signal) and “doppler” (relative
velocity) respectively (contrast this with the 7 and € for the WVD).
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So, ambiguity function is a function that measures the time-frequency correlation. It was
introduced long ago in radar signal processing by Woodward and is used extensively in
both radar and sonar signal processing. It was pretty much like the Wigner-Ville gives a
lot of information about the time-frequency correlation, that is, how the correlation, how

the two signals are correlated in the time-frequency plane.

Now, the way it was introduced, it was completely different from the way Wigner-Ville
was introduced. The context is radar signal processing where one is interested in
knowing the delay in, determining the delay between the transmitted signal and the
received reflected signal. So, there is a radar, which is trying to detect the location and

the speed of the target.

It does this by transmitting a certain signal at a certain frequency and then it, there is a
receiver seating in the radar, which receives the reflected signal. Once the signal hits the
target, it is reflected back and assuming under ideal conditions, that is, there is no loss of
the velocity and. So, on due to the medium, which is typically air in radar signal
processing, then what should happen is, that the reflected one should be essentially a
time shifted version of the transmitted signal, right. And in addition to that there will be a
Doppler effect and | presume, that you know what is Doppler effect. It is the perceived
frequency of a moving object, right. When a, when an object moves at a certain
frequency, it is at a certain velocity, then you perceive the frequency in a different
manner. So, this, this frequency depends on the velocity itself, that is, a classic example
is the train coming on the platform and then leaving, that is a classic example of

phenomenon where Doppler effect is experienced.

So, in radar signal processing the objective is to determine the location and a velocity
and this is location is determined by first calculating the delay. Both are actually
calculated, determined by calculating what is known as a delay, that is, a round trip delay
and the. So, called Doppler, which is called the nu, that is, the Doppler is a relative
velocity, relative to the speed of that frequency of that signal in the medium in which it is

traveling.

So, the ambiguity function is essentially a correlation between the signal and of course,,
a reflected version of itself. You can define ambiguity function between two different
signals because we are talking of radar signal processing. What we are doing is, we are

shifting. You can think of this x of t plus tau by 2 times x star of t minus tau by 2. In the



same way, as we wrote in the previous lecture, can be written as x of t prime times x of t
prime. Here, | have s here,. So, x of t prime time x star of t prime minus s. So, x star of t
prime minus s is a, is a shifted, time shifted version and the star is essentially to care take
care of the analytical representation of the signals.

So, you are looking at this. In this time-frequency plane how does this correlation change
in the frequency, in the time-frequency plane and therefore, to evaluate that you take a
two-dimension, you take in single integral with respect to the. So, called Doppler, right
and that is what you have here. And ambiguity function is the function of this Doppler nu
and the shift s.

The reasons for the name ambiguity is ideally, when the shifts match exactly. Then, you
want the ambiguity function to be one and where the shifts do not match, that is, between
the reflected and the transmitted signal, then you want it to be 0. Unfortunately, that is
not going to be the case. The match between the shifted and the shifted, reflected and the
transmitted signal is going to be non zero even though it, it does not exactly match the
delay. And therefore, there is some ambiguity and loosely people have called it as
ambiguity function,, but otherwise there is no ambiguity about the function value itself.

So, you should be clear about that.

Coming now to the math, the ambiguity function is this, a integral here. It is single
integral of the, it is a Fourier transform of some kind of an instantaneous or correlation
unlike the Wigner-Ville where the integrating variable is s, here the integrating variable
is t prime. So, that is a prime difference. You can rewrite this ambiguity function in terms
of the Fourier transforms of x and x star in the fashion that | have given here where the
frequency variable, now the dummy frequency variable is omega prime. Here, the

dummy time variable is the t time prime.

As | mentioned earlier, s and nu are known as the delay and Doppler and you can read up
any text book on radar signal processing, which will give you more insides into the

historical development of this ambiguity function.



(Refer Slide Time: 07:27)
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Connections between AF and WVD

The ambiguity function was introduced by Woodward in radar signal processing. Like the WVD, it
measures the time-frequency correlation of a signal, i.e., the degree of similarity between x(t) and its
shifted-plus-modulated version.

; t t ¢
Recall the definition of WVD: W,.(1,€) = /.r (r - 2) z* (.— - 5) eIt di
Not surprisingly, the AF function shares a nice relation with the WVD.

The AF of a signal is the 2-D transform of the WVD of that signal: ‘

Az (v,8) = //l‘i",,(r.f)("’["‘"{") dé dr (4)‘

:
Nolb; "Q 2-D transform here is 1-D with respect to 7 and inverse Fourier transform with respect to ¢
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The prime purpose of introducing this ambiguity function is to reinterpret Cohen's class,
as | mentioned early on in this lecture, and it gives us a fresh perspective. To compare the
definition of ambiguity function with the Wigner-Ville distribution, | have given you the
definition of Wigner-Ville. As | mentioned earlier, when | evaluate the Wigner-Ville, the
integrating variable here is t, whereas, when | evaluate the ambiguity function, the
integrating variable is the t prime. That means, if | were to write the Wigner-Ville for
exactly the same notation here, | would integrate with respect to s. Therefore, you should
expect some parallel between Wigner-Ville and the ambiguity function. In fact, that is

what is the case.

The ambiguity function of a signal is the two-dimensional, again Fourier transform of the
Wigner-Ville. These two-dimensional Fourier transform, again is the same case, that we
mentioned earlier, inverse with respect to one and forward with respect to another
variable. So, this is the relation, formal relation between the ambiguity function and the
Wigner-Ville. Now, you can start relating this to what we mentioned in the previous
lecture. The Cohen’'s class is a smooth Wigner-Ville or the convolution of the Wigner-
Ville with the smoothing kernel theta. And | can write the smoothing operation in the
Fourier domain as or the convolution operation in one domain as the product operation in

the dual domain and that is exactly what we are going to do now.

We have already determined what is the Fourier transform of Wigner-Ville, which is
ambiguity function and we know already, that the Fourier transform, two-dimensional

Fourier transform of theta will give me f. So, you should expect now, that the Cohen's



class can be written as a product of the kernel f and the ambiguity function. Then, of
course,, an inverse Fourier transform of that will get, will get me the Cohen's class, it is

not exactly the Cohen's class, right. So, that is the basic point here.

And also, | should caution you, there are certain texts, which will define ambiguity
function in a slightly different manner and you have to watch out for. Then, all these
expressions changing accordingly. And one change that you will find in a few text books
is, instead of the negative sign here you would find a positive sign and that changes the
way you write this transform. So, everything else has to be consistent. So, when you are
reading a text book watch out for these differences. But | have used conventional
definition of the ambiguity function and also notice, that we have switched the order, the

ordering of variables in Wigner-Ville and ambiguity function in Wigner-Ville.

The first variable tau as units of time, t units of time and zee has units of frequency.
There is ambiguity function as the variables ordered, where nu is the velocity Doppler

velocity and s is the, s has units of time t.

(Refer Slide Time: 10:30)

Properties of AFs

The AF has certain interesting properties:

1. Marginal properties: The temporal- and spectral-correlations are the AF evaluated along the
respective axes, For instance, 0,(s) = Azz(0, ).

2, Energy: The energy of the signal is the value of its AF at the origin:
Ezz = A22(0,0) < |Az:(n,v)] (5)

3. Insensitivity to time-shifts: y(t) = z(t — to)e’“o" = A, (n,v) = Ay, (n,v)e!“on-to")

4. Interference geometry: The elements of the AF corresponding to the signal components are
located in the vicinity of the origin, whereas those of the interference are located far away from
the origin. The distance of these terms from the origin is proportional to the time-frequency

l distince between the involved components.
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Before we proceed to reinterpret Cohen's class using ambiguity functions, it is interesting
to note the certain properties of ambiguity functions, primarily because it helps us
understand how interferences are removed in the ambiguity plane. We know already,
smoothing in the Wigner-Ville removes interferences because here essentially

performing some kind of averaging in time and frequency

When we rewrite Cohen's class in terms of the ambiguity functions, we will notice



something very interesting about the interferences and that is related to one of the

properties that | have listed here.

The first property is that of the ambiguity function is that when | evaluate the ambiguity
function along one-dimension, | recover the respective correlation. For example, if |
want to recover, let us say, the auto correlation of the signal, then all | have to do is, |
have to evaluate the ambiguity function along the s axis itself. That means, | set the
Doppler to 0. These are called ambiguity functions with Doppler cuts and shift cuts or
delay cuts. There is a Mat lab function also in one of the tool boxes, not in the regular
tool boxes, which commercial tool boxes, which computes the ambiguity function and
there you will see the term called Doppler cuts and delay cuts and. So, on, I think, it is
called phase array tool box or something like that. I will, I can give you the exact answer

in the forum.

So, likewise, when | evaluate the ambiguity function along the Doppler axis, then |
recover the spectral auto correlation, right, of the signal, that is, auto correlation in the
frequency domain. In fact, that is something else that is not listed here I will talk about,

let me just finish. There is another property that is interesting.

Once | say finish discussing this properties, the energy of the signal, the interesting fact
is, energy of the signal is the value of the ambiguity function at the origin. This is unlike
what you see in Wigner-Ville, right. Wigner-Ville preserves the energy you have to
integrate along the entire ((Refer Time: 12:39)) plane to recover the energy. Here, | have
to evaluate the ambiguity function at a point, then that point is the origin and that exactly
((Refer Time: 12:48)), which means now you should expect the energy of the signal to be
concentrated around the origin. That is one of the key things that you should start

noticing right and

Obviously, it reaches the maximum at the origin compared to the ambiguity function
reaches a maximum and origin, compare to its magnitude at all other points in the nu s
plane. There is a small mistake here, it should read as nu, s and will correct at in both this

expression in equation 5 as well as one below.

The ambiguity function, unlike the Wigner-Ville is insensitive to time shifts and
therefore, the magnitude is useful in radar signal processing. In Wigner-Ville, we wanted
time and frequency to be sensitive to time and frequency shifts,, but the ambiguity

function is not. In general, ambiguity function is a complex value dump quantity



When we say it is insensitive, the magnitude is insensitive. As you can see from the
expression here, y is a time shifted and frequency modulated version of x and the
ambiguity function of y is, again here it should be ambiguity function of x times the e to
the j something. When | take the magnitudes on both sides they should match, which

means, it is insensitive to, insensitive to time and frequency with time.

And now, coming to the most important one. Well, one important point was the energy,
that energy of the signal is concentrated at the origin. Therefore, you should expect the
signal components to be concentrated around the origin in the ambiguity function plane.
The interferences, how do they map onto the ambiguity function plane or the nu, s plane,
it turns out be, that the interference geometry unlike in Wigner-Ville, they are located far
away from the origin in the Wigner-Ville plane, that is, the tau, z time-frequency plane.
The interference terms occurred exactly midway in the time and frequency based on the
time and frequency centers of the signal components. Now, the interferences are going to
be located far away from the origin. Let me explain that to you with the help of an

example.

(Refer Slide Time: 14:59)
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Example: WVD vs. AF

» The signal terms are localized in the respective ~ sig = atoms (128, (32,.15,20,1;96,.156,20,1; ...

T-F positions in the WVD; whereas they are 32,.85,20,1;96,.35,20,1]);
tfruv(sig);

localized around the origin in the AF domain.
ambfunb(sig);

» The situation is just the reverse for interferences.

Syt i Narrow-band ambiguty hunction

L7
©
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So, here | have for comparison the Wigner-Ville and ambiguity function on a signal that
we have seen earlier. There are two atoms, one of high frequency and one of low
frequency located at different time centers. This is the familiar Wigner-Ville we have
seen earlier. They both are, because of the amplitude modulation these atoms are of finite
width.



What is of important to us is the presence of this interference term. The interference term
is actually located midway in the time-frequency plane with respect not in the time-
frequency plane,, but midway with respect to the time and frequency centers of the
atoms. Whereas, in the ambiguity function plane, that is, the Doppler and delay plane

notice, that I have delay or the s along the x-axis and Doppler or nu along y-axis.

Now, for the ambiguity function. The center here in the contour that you see in the center
of the delay, Doppler plane is essentially the signal components, that is, both the atoms,
the signal components here, which are these two atoms have mapped to the center at the,
around the origin. We should expect that because a signals energy is the value of the
ambiguity function at the origin. And what you see as circles away from this origin are
the interference terms. So, what has happened is the ambiguity function has taken these
two atoms in the time-frequency plane and put them at the origin and taken interference

term and split them far away from the signals.

So, it is exactly the reverse of what is happening of what you have seen Wigner-Ville and
that is because of the dual nature of the ambiguity function and the Wigner-Ville, right.
We have also seen this kind of duality between time and frequency in the classical
Fourier domain. This is what is happening here. All the signal energies concentrated at
the origin, around origin and the interference systems are far apart. You may ask what is
the advantage. Now, that there is a big advantage because | know theoretically, this is the
property of the ambiguity function.

If I want to remove interferences what should | do? A common sense approach would be
to apply some kind of waiting or windowing to the ambiguity function such that the
window will only pick values of the ambiguity function within the vicinity of the origin
and leave out the rest and then perform an inverse Fourier transform. It will get me the
Wigner-Ville and that is it. So, | would have obtained the smooth Wigner-Ville. This is

the basis for reinterpreting Cohen's class using ambiguity functions.

In the smooth Wigner-Ville approach we said these interferences, that | see in the
Wigner-Ville can be gotten with by performing at time and frequency averaging using a
particular kernel, that now is equivalent to apply in some kind of a waiting here in the
ambiguity function of the delay-Doppler plane. So, that this kernel, now in the ambiguity
function plane, will only pick values, give importance to values of the ambiguity

function within the vicinity of the origin and leave out the rest. And then, | perform the



inverse Fourier transform, two-dimensional Fourier transform of that, |1 will get a smooth
Wigner-Ville that is the basic idea.

(Refer Slide Time: 18:24)
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Alternative interpretation of Cohen's class

The Cohen's class of distributions
Cralr,£:60) = / /H'(r'.{')ﬂ(r ~7 e~ dr' de'
can now be re-interpreted in two different ways:

1. Writing the convolution as a product in the Fourier domain

2. By introducing a generalized ambiguity function

:
[ v)
\.
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So, with this idea we can reinterpret Cohen's class in two different ways, both lead to the
same interpretation. The first one is the one that we mentioned earlier in the previous
lecture where | could write the convolution in the time and frequency as the product in
the Fourier domain. We know, that the two-dimensional Fourier transform of Wigner-

Ville is ambiguity and we also know, that the two-dimensional of theta is f, right.

(Refer Slide Time: 18:58)
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Cohen's class is the 2-D inverse FT of weighted AF
Using the convolution to product property of Fourier transforms, we have
Cos(r6:0) = f f Ag(v, 8)Asa(v, 8)e7) ds du (6)

where the ambiguity kernel Ay(.,.) is the 2-D FT (in the same way as the ambiguity function) of the
time-frequency kernel:

10 = [ [, dgin )
In fact, the ambiguity kernel is the f{.,.) itself! (recall that #(r£) is the 2-D FT of f(u,s))
Ag(v,8) = (1, 3) (8)
)
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Now, all I need to do is to reinterpret. Let us look at first one and then talk about the



second one. All I need to do that is to rewrite the Cohen's class as an inverse Fourier
transform of the, Fourier transform of the convolution. So, the first step is Fourier,
Fourier transform of the convolution. What does that fetch me? | know Fourier transform
of convolution is a product of what? Fourier transforms of the respective ones, the
Fourier transform of w is ambiguity function, the Fourier transform of theta is f, right,
which we denote as a theta here,, but this A theta is nothing, but f itself. And then, | have

to perform an inverse Fourier transform and that fetches me the Cohen's class.

So, that is a very straight forward, interpret, reinterpretation of the Cohen's class where
now we call this f as the ambiguity kernel. This is just as a straight forward extension of
the definition of ambiguity function itself. So, now f assumes this interpretation of A
being the ambiguity kernel. In fact, that is also what is the term that is used ((Refer Time:
19:57)) book and few other text.

So, to summarize in this approach the Cohen's class is nothing, but the two-dimensional
inverse Fourier transform of the weighted ambiguity function. And now, | have better
feel for what role the f plays. Earlier we called this f as the weighting or the
parameterization kernel. Now, it justifies, that terminology it weights the ambiguity
function ((Refer Time: 20:24)). So, obviously, now I, if | want to choose f as a Gaussian
one, it should have more weighting in the origin and less weighting. So, it, the values of f

should fade away as you move away from the origin in the delay-Doppler plane.

Now, you also understand why we use the same variables to characterize f. We had used
(nu, s) and the same variables are used to characterize A. So, all of that now becomes a

lot clearer.



(Refer Slide Time: 20:58)
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Cohen'’s class as 2-D inverse FT of generalized AF

Introduce the generalized AF,
AY (v,8) = c(v,8)Azz(v, 8) (9)

Now, recall that the Cohen's class can be thought of as a generalized WVD and that the ordinary WVD
is the inverse 2-D FT of the AF.

We can extend the relation between WVD and AF to their generalized versions as well (of course, by
imposing certain restrictions on ¢(v, s)). Thus, we have

‘ ; ‘
| Cre(T,6;0) = 2'//:1351(11.5](')” s dy (10)

Once again, we have

["~>°} c(v,8) = f(v,8) (11)
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The second interpretation is to introduce what is known as a generalized ambiguity
function. It is the same thing. All we are saying is, first recall, that the Cohen's class is a
generalized Wigner-Ville, right. Now, if | take the Fourier transform of the Wigner-Ville,
I get the ambiguity function. So, if | take the Fourier transform of a generalized Wigner-
Ville, | should get generalized ambiguity. So, what | do is, | construct generalized
ambiguity and take the inverse two-dimensional inverse Fourier transform. That is

exactly what I am doing here.

I modify the ambiguity function with another function, two-dimensional function called
C and called that as a generalized ambiguity function. This C cannot be anything
arbitrary. Again, | have to impose certain restrictions on C if | want certain properties on
the Cohen’s class. In fact, this C is nothing, but f. You should have guessed that by now.
This C, sorry for the confusion, this C and the same c, this is a small c, this small c is
nothing, but the f.

Now, the Cohen's class is nothing, but the inverse two-dimensional Fourier transform of
this generalized ambiguity function. So, Wigner-Ville will give me ambiguity function,
that is, they are duals of each other in a two-dimensional Fourier sense, generalized
Wigner-Ville. And generalized ambiguity functions are also duals of each other in the
sense of two-dimensional Fourier transform. So, this small ¢ that we have introduced to
modify the ambiguity function is nothing, but the kernel f itself. So, again this is another
interpretation,, but it is more or less is same interpretation that we have acquired earlier,

which is that f plays a role of a weighting on the ambiguity function.



(Refer Slide Time: 22:42)
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Understanding the weightings

WignerVille weighting unction Wigrer-Ville dstribution

e ? /
e i
- (1 e
Dolay T Tme
Specirogram woighting huncion Spectrogram
Dolay Tien
SP-WV waightng function Smoothad-paecdo-WVD
=i | (e
. ——

[
Ne% Figure borrowed from TFTB Tutorial for educational purposes only. Source: Auger et al. (1997)
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Now, just to give you a feel of how things look like, I have borrowed this figure from the
time-frequency tool box tutorial, which gives you a fantastic overview of all the time-

frequency tools that you have.

These figures are generated for three different distributions that we are familiar with: the
Wigner-Ville, the smooth pseudo, the spectrogram and the smooth pseudo Wigner-Ville.
On the left, sorry, on the left what you have? They are the weighting functions, that is,
the values of f in the delay-Doppler plane and on the right you have the smooth Wigner-
Ville.

So, what you can get from this is, let us start with Wigner-Ville. We know that to
generate the Wigner-Ville, f has to be one along the Doppler plane in the delay-Doppler
plane. We have seen that earlier. And what this, what is shown here is not f alone, it, what
is also shown is the Wigner-Ville of some signal, right. The middle term here are the
interferences, sorry, the middle, what, what is shown here all though it is, says, Wigner-

Ville is weighting function, what is shown here is ambiguity function.

The middle one is the signals components and the far off ones are the interferences. We
have seen that, right, because we are working in the delay-Doppler plane, we are looking
at the ambiguity function. Wigner-Ville does not perform any weighting on the
ambiguity function. Therefore, there is no modification done simply and inverse
transform of this ambiguity function will recover the Wigner-Ville on the right. And you

see, this presence of huge interferences and these two dark lines are the signals



components ((Refer Time: 24:26)). Do not worry about what is the signal, right now you
can imagine what the signal. Signal has essentially two kinds of chirps,, but there are

interferences there. They are located differently.

Now, the spectrogram performs some kind of weighting on the ambiguity function.
Recall, we said earlier in the previous lecture, that the weighting or the values of f that
will generate the spectrogram is the ambiguity function of the window, that | use in the
spectrogram itself. Remember, spectrogram is generated from short-time Fourier

transform. There is the window function.

We said, in terms of smooth Wigner-Ville the kernel is the Wigner-Ville of the window in
terms of the, in the ambiguity function plane. We say, that the weighting kernel, which is
the f is nothing, but the ambiguity function of the window itself. So, that is exactly what
is happening if f, for a particular choice of window, the f looks like this So, what it is
doing is it is picking values of the signals energy and leaving out the interferences, as a
result of which the interferences have vanished in the Wigner-Ville. But what has
happened is, with respect to the original Wigner-Ville, | have some kind of, | have some
kind of smearing of the energy. This is the sacrifice that | am making and the weighting

here tells you why that smearing occurs.

Lastly, we have the smooth pseudo Wigner-Ville, which performs different kind of
weighting. What is the prime difference between the spectrogram weighting and the
smooth pseudo Wigner-Ville? Well, please do not tell me, that it is a size of the window,
right. Of course, that is a qualitative, but more importantly it is, it can take some
interferences also with it when it is varying the ambiguity function, whereas, the
spectrogram is the weighting function. Spectrogram only concentrates on the signal

components that is what we mentioned earlier when we discussed about Cohen's class.

The smooth signal, the smooth pseudo Wigner-Ville can produce interferences eventually
depending on how you choose your widths, right. If you choose the certain width of the
windows in time and frequency that you have, it is a smooth pseudo Wigner-Ville.
Therefore, it is a separable one. | have two windows to clear around with and depending
on how | choose the widths, you can end up taking the interferences or not. For a
particular choice you will get spectrogram,, but there exist a lot of other choices and | am
only showing you here the window, that almost goes up to the interference, which is

what is done in the time-frequency tutorial and therefore, some interferences, very minor



interferences can come in back. Mostly, there is none. In fact, if you slightly readjust
this, fine tune this, then you will be able to get better energy distribution, better localized

energy distributions than the spectrogram and still be devoid of interferences.

So, there is again a reiteration of what we had seen with respect to another example
previously. This way you can imagine the weighting functions for all the other
distributions. In fact, just go through this exercise, take the kernels that we have listed in
the table in the previous lecture. For some well-known distributions take a signal plot,
the signals ambiguity function and on the same plot, plot the weighting function also and
see how the weighting function performs with respect to removal of interferences. If the
weighting function is able to remove interferences you are guaranteed, that you will get a

positive value distribution by virtue of Wigner’s theorem once again.

So, to summarize what we have done in this lecture is reinterpreted Cohen's class using
what are known as ambiguity functions that were introduced in signal processing,
whereas, Wigner-Ville distribution originated from a combination of approaches in
physics and signal processing. But this shows, that there exist a lot of parallels between
the tools, that originate from different domains, which is what we are also mentioned in
the introductory lecture with respect to wavelets as well, where wavelets were introduced
in different domains and different waves,, but the ideas are more or less same. The nice
thing that we have seen here is the duality between the ambiguity function and the
Wigner-Ville and it gave as a fresh interpretation of the weighting function.

So, hopefully you enjoyed the lecture. We will see again in the next lecture, which will
close the topic on Wigner-Ville where we will look at, briefly look at the. So, called
affine class of transforms. Here, Cohen's class insist that the smooth Wigner-Ville
satisfied the time and frequency invariants property. In the affine class we will insist, that
it satisfies the time and dilation are the scaling invariants property. Then, we will briefly
talk about what is known as reassignment, which is more of a modern development and

close the topic on Wigner-Ville distributions.

Thank you.



(Refer Slide Time: 29:44)

Lecture 6.7

Example: WVD vs. AF

» The signal terms are localized in the respective
T-F positions in the WVD; whereas they are
localized around the origin in the AF domain,

N=64; sigi=fmlin(N,0.2,0.5).+*amgauss(N);
sig2=fmlin(N,0.3,0) .*amgauss(N);

sig = [sigl ; sig2);

tfruv(sig); ambfunb(sig);

» The situation is just the reverse for interferences.

Narrow-band ambiguty lunction
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((Refer Time: 29:43)) The example that we take up here for illustrating the difference
between Wigner-Ville and ambiguity function. In fact, rather, rather than difference in
duality is one that is given in the tutorial, time-frequency toolbox tutorial. It consists of
64 observations of a signal, which has modulated chirps spaced apart in time and you can
read of the range of frequencies here that are given. In fact, they are the same chirp is
being modulated. Sorry, the one chirp is being modulated within Gaussian amplitude
modulation and there is another chirp, which is being modulated with another amplitude,

Gaussian modulated amplitude.

So, now what we do is, to generate the signal we concatenate these two signals and the
signal here is shown in the top, as usual, with the spectrum here on the left panel of the
figure. Let us come to the point. The point, that we made earlier is, that the signal’s
components in the Wigner-Ville plane are located exactly at the point, respective points
in the time-frequency plane, that is, that the, at the respective time-frequency centers and
that is what we see here in the figure. And the interference terms has now earlier, are
concentrated midway between the time-frequency centers of the respective components

of the signal.

When we move to the ambiguity function plane, which is essentially the delay-Doppler
plane, the reverse happens. All the signal components are concentrated at the center at
the origin, in fact, of the delay-Doppler. This is an absolute origin here and of course,,
what has happened is both the atoms, that is, both the signal components are modeled up

here. They are all nicely and cozily settled. We know, that the value of the ambiguity



function and the origin gives me the energy of the signal.

Now, the other important point that we learned is, that these interference terms move
away from the origin and that is exactly what has happened. The interference term, that
occurs midway in the tau-zee plane or the time-frequency plane is, is now split apart and
it is located far away from the signals components in the delay-Doppler plane and they
are symmetrical. They are not really located at some arbitrary portions. There is also a

certain geometry to this interference terms in the delay-Doppler plane.

One of the basic idea of constructing the smooth Wigner-Ville distribution is as follows,
based on which we can now set the tone for reinterpreting the Cohen's class. The basic
idea is to apply a weighting function in the ambiguity function plane, that is, to pick only
certain values and to leave out certain other values that is a role of the weighting
function. And what are the values that we are interested in? Obviously, the signal. So, |
apply the weighting function in such a way that it picks the values of the signal
components, which is, which are centered around the origin and leaves out the values of
the ambiguity function, which are far away from the origin. Of course, what is far and
what is near is what is determined by the shape of the weighting functions itself. But
once | do that then, what | have done is, | capture the signal components in the delay-

Doppler plane.

All I need to do to construct the smooth Wigner-Ville is to perform a two-dimensional
inverse Fourier transform and then I will get the smooth Wigner-Ville. Earlier we did this
by directly working with the Wigner-Ville distributions itself by subjecting it to a
smoothing operation using a convolution kernel. The convolution now becomes a
product. All I have do is now multiply the ambiguity function with another weighting
function and this weighting function is none other than the f of (nu, s), that we have seen
earlier when we introduced Cohen's class. And we said at that time, that we will acquire
a fresh interpretation of the weighting function and that is what we are going to do with

these basic ideas established. We can now reinterpret the Cohen's class.



