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Hello friends. Welcome to lecture 6.6, where we shall discuss Cohen’s class and smooth 

Wigner-Ville distributions. In the previous lecture, that is 6.5 we had introduced to the 

concept of smoothing for the purpose of enforcing positivity. In fact, we looked at one-

dimensional smoothing in the form of the pseudo Wigner-Ville distribution and then, a 

two-dimensional smoothing for positivity.  

 

Now, we will take that idea forward and study a general class of smooth Wigner-Ville 

distributions known as the Cohen's class of distribution which was introduced at least 

more than four decades ago by Cohen himself. Now, also let me tell you that smoothing 

can be done in a number of different ways and Cohen's class performs one kind of 

smoothing. In the next lecture, we will learn what is known as an affine class of smooth 

Wigner-Ville distributions. 

(Refer Slide Time: 01:18) 

 

So, the objectives of this lecture is to primarily study the Cohen’s class of distributions, 

and in this context, we will look at what is known as couples smoothing which is what is 



done by spectrogram versus separable smoothing. There are some advantages of 

separable smoothing and finally, just quickly have a glance at a few well-known 

distributions. The lecture is definitely going to be heavy on the math. There is no escape 

to that, but from time to time, we will have a few illustrations to lighten up and also to 

illustrate the concept themselves, ok. 

(Refer Slide Time: 02:00) 

 

So, just to quickly recap as to what we studied in previous lecture, the idea smooth 

Wigner-Ville distribution was to use a kernel function to smooth the Wigner-Ville in the 

time and frequency axis respectively. Recall what smoothing means is convolution also, 

but smoothing is much more than that is. It includes a lot of other operations apart from 

convolution. In this lecture, it turns out that the Cohen’s class is nothing, but convolution 

based smoothing of the Wigner-Ville distribution. Now, the important point is one, there 

are two important points. One, the purpose of smoothing is to improve upon the 

drawbacks of the Wigner-Ville, right. For example, positivity is one that is a very 

desirable property and we realize a spectrogram achieves that with the help of the 

convolution based smoothing kernel. 

The second point is in general whatever desirable property that I want to have of the 

smooth Wigner-Ville, I am going to transfer those requirements on the kernel, and at an 

appropriate point in the lecture, we will see what the conditions are that I have to place 

on this kernel. Before we move on, let me also tell you that although we begin this 



smoothing or the Cohen’s class itself the smoothing in the time and frequency approach. 

There are a number of other ways in which Cohen’s class can be presented and it 

depends on the author, depends on the text. So, please do not think that this is the only 

way to introduce Cohen’s class. This is one of the natural ways to do that and also, there 

are going to be some differences in the notation and sometimes in the definition of 

certain kernel functions that you may use. You should be able to see through that as long 

as the text book is consistent with all the definition, you should be alright. So, please 

keep that in mind. 

(Refer Slide Time: 04:14) 

 

So, now, let us move on to Cohen’s class. Cohen basically required that the smooth 

Wigner-Ville distribution that you obtained; satisfies to key properties which is the time 

and in wave frequency covariance. Sometimes this is also called invariance, and you 

should be able to switch between these two. What this time and frequency covariance or 

invariance means is, if there are time shift in the signal, the energy distribution to reflect 

that and if there are frequency shift or modulation, the same should be reflected in the 

joint energy distribution as well. 

Now, if you recall from linear system theory, although we are not discussing that in this 

course, if you have some familiarity with linear systems theory, then you should be able 

to recall that translation invariance in time. In a particular domain amounts to using 



convolution like operators and I will just quickly recap that for you from review that 

from linear systems theory. 
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This is not something new. We have already seen that. If I have an LTI system, then we 

know that this LTI system input is u and output is y is described by this convolution 

equation which can also be written in this way, g of t minus t prime u of t prime d t 

prime. In both cases, the limits run from minus infinity to infinity. So, this is the 

governing equation for the continuous time linear time invariance system. In fact, I am 

not going to derive the convolution operation for you, but starting from the properties of 

the linearity and time invariance, you can derive the convolution equation. That is how it 

presented in all the text on linear systems theory. The message that I want to give you 

here is time invariance is usually characterized by convolution, although we use the 

notion of time here. In general you have to now look at this in a broader sense. It could 

be space, it could be frequency, whatever domain in whichever domain, you want 

invariance. Typically you will run into this convolution like operation. 

Of course, there is linearity that is also playing a role here, but predominantly this 

convolution comes about due to the time invariance requirement. What is time invariance 

requirement? Again here is the same story. If I shift the input by a certain amount, big T, 

then y should also shift by the same amount, and that is what we mean by time 

invariance here. In other words, regardless of when I give the input, the output of the 



system should be the same for that and the same story here. I want this smooth Wigner-

Ville distribution or modify Wigner-Ville distribution to have time and frequency 

invariance. If I shift the feature of the signal in time or if I shift the signal itself, the joint 

energy density should shift in time and vice versa and also, likewise for frequency as 

well. 

So, now, what we are going to do is, we are going to assume that rather than going to 

work with convolution like kernels because I want invariance in time and frequency 

domains. Therefore, we have the Cohen’s class of distribution in this way that for 

expression given in equation 2 as a set, earlier Cohen’s class can introduce in number of 

different ways. I have followed the interpretation or the approach that is used in (()) 

book, in few other books, but if you take Cohen’s book itself, you will see the Cohen 

does not introduce the Cohen’s class in this way. There is another expression which you 

are going to come across which will be the starting expression, but this is a nice thing to 

begin with because we know convolution and smoothing or equivalent. Therefore, you 

can straight away write a generic expression for Cohen’s class based on the primary 

requirement at time, and frequency invariance should be a property of smooth Wigner-

Ville distribution. 
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So, we have know convolution in time and frequency, I could rewrite the convolution as 

a product, but you may not able to see that straight away right now. In fact, all of this 



equivalence between different expressions for Cohen’s class will become clearer partly 

in this lecture and partly in the next lecture, where we will talk about what are known as 

ambiguity function. So, the class of distributions, that is the Cohen’s class of distribution 

can also be written in this way, where I have now a triple integral. Earlier I had a double 

integral because I am performing smoothing in time and frequency. Now, to replace the 

Wigner-Ville with that is definition and the kernel that is the theta kernel with the 

equivalent kernel in the time frequency, that in same domain as the signal time frequency 

plane, then you will have a triple integral. In fact, you should expect that because I have 

convolution in the frequency domain time frequency plane here, right. 

Now, if I recalled the property of Fourier transform that you have studied in one-

dimension, but if you extend that two-dimension, then the same properties hold 

convolution becomes a product, that is convolution in one domain is product in another 

domain. So, for the moment assume that I was to take Fourier transform of this c, right. I 

am going to take a Fourier transform of this convolution. So, what happens when I take 

the Fourier transforms of convolution is that then it becomes a product in the dual 

domain. So, it requires a bit of imagination here, but as long as you hold on to that 

property of convolution becoming product, then you are (()). 

So, imagine that if I am taking Fourier transform of the double integral in one, then I get 

a product in the dual domain. We will talk about what a dual domain is. All I have to do 

is take an inverse of that product to recover my c. If you understand that point, then this 

equation 3 will become clear to you as to why that expression. Of course, the way it has 

been written does not really give you that feeling, but gradually you will understand that 

this is nothing, but the inverse two-dimensional Fourier transform of what you have in 

equation 1. So, with that the intimidation that you get by looking at an equation 3 should 

come down. 

So, now instead of theta, we will have f. What is this f? Well, if you look at the relation 

between theta and f, theta is nothing, but the two-dimensional Fourier transformation of 

f. Now, you have to be careful here. In fact, I have written it as e to j, nu tau minus g s. 

So, there are a set of new variable’s that have arrived here in this slide. Earlier we had 

only tau and g keeping track of the points in the time frequency plane. Now, I have nu 

and s. These are the nu variables that have appeared rightfully. So, that is why I have 

variable called nu. What is the relation between f and theta? So, this is nu and s is a new 



plane which we call later on when we talk of ambiguity functions. We will call this nu as 

the doppler and s as the shift. This is a terminology that is used in radar signal 

processing. 

So, you can get familiar with this terminology upfront itself. Nu is the doppler and s is 

the shift here. You can think of theta being the two-dimensional transform of f, or tool 

inverse to two-dimensional fourier transform whichever we way look at it, but this two-

dimensional fourier transform that you see is not a straight forward extension of the one-

dimension. In one-dimension Fourier transform, you would have an e to the minus j. 

Here I have e to the minus j on one factor and I have e to the j on another factor, right. If 

you look at the equation carefully and therefore, you cannot strictly call it as the two-

dimensional Fourier transforms, but the moment you move to multi-dimensional Fourier 

transform, there are number of combinations. You can have a minus on both sides, both 

dual variables, you can have a negative sign on one of them and positive sign on another 

and so on. 

So, this is one of those classes and you should get comfortable with this form of two-

dimensional Fourier transform because this will continue throughout this lecture and next 

lecture, and probably even in the closing lecture as well. So, this is the two-dimensional 

Fourier transform that we are going to work with all. You have to be sure is to keep track 

of in which variable it is the inverse Fourier transform and in which another variable, it is 

a forward fourier transform. Here theta is the two-dimensional Fourier transform of f or 

you can say f is the two-dimensional Fourier transformed theta depending on which 

plane variable you are considering as an inverse and forward. 

Here you can say that it is inverse with respect to nu and forward with respect to s, right 

or I can say it is the two-dimensional inverse Fourier transform with respect to s and f 

whichever way we can look at, it does not matter. Essentially there is a two-dimensional 

Fourier relation between theta and f, and this is what we said earlier when I take the 

Fourier transform of the convolution operation. Here I will end up with a product in the 

dual domain. So, I have a product of f and also, the usual terms as you have seen 

Wigner-Ville and so on. This equation will be clearer to you when we introduce 

ambiguity function and so on. So, let us proceed. This is the starting equation presented 

in many texts on Cohen’s class. 



Now, the other interpretation that you can give to Cohen’s class is that is the generalized 

Wigner-Ville distribution, right. Why is generalized? It is because if I said f equals 1 in 

both dimension, then I will recover the Cohen’s class. In fact, I leave that as an exercise 

to you. Be careful when you do that. When you say f equals 1, you will have to use the 

familiar result that we have integral e to the minus j x t d t will be dragon x, right. So, 

you should use that relation to be able to simplify the Cohen’s class to the regular 

Wigner-Ville in that sense because when I said f equals 1, I recover the Wigner-Ville. I 

can call the Cohen’s class as the generalized Wigner-Ville distribution. It is also 

customary to rewrite Cohen’s class in number of other kernels. The purpose is to be able 

to interpret in different domains. 
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Each domain will cater to certain application depending on the way you are looking at it. 

So, it is useful to know how Cohen’s class can be rewritten in terms of different kernels. 

So, we have now come across the theta which is the time frequency. You can call that as 

the smoothing kernel. Then, f is called as the parameterizations of the waiting function 

kernel. 

Now, we have what is known as a time lag kernel. What is the interpretation? What is the 

approach here? Well, it stamp from the interpretation that the Wigner-Ville when we 

wrote the Wigner-Ville, we said it is a Fourier transform of an instantaneous auto 

correlation, right. The instantaneous auto-correlation being x of t plus tau by 2 times, 



sorry tau plus t by 2 times x star of tau minus t by 2, that is the instantaneous correlation 

auto correlation. 

Now, you can interpret Cohen’s class in the same way because it is a generalized 

Wigner-Ville. We can think of Cohen’s class being the Fourier transform of the 

generalized auto-correlation and to realize this first introduce the time lag kernel. So, 

what we are going do is, we are going to take a one-dimensional Fourier transform along 

the new axis. So, I am going to have a function which is function of this lag l, and the 

shift s that we talk about the nu is going to be eliminated because I am integrating in. I 

am actually smoothing along the nu axis. The moment I do that, I get what is known as a 

generalized correlation. Remember the regular auto-correlation that we talk about for 

stationary class of the signals is the function of the single variable lag l. 

Now, the generalized auto-correlation is the two-dimensional auto-correlation. You have 

to keep track of two things right because now we are dealing with time varying signal or 

frequency content that is varying the time. So, single lag is not going to help me 

characterize the signal. I would require two variables, one is a lag and other is a shift. 

Here we will understand the shift better in the next lecture when we introduce ambiguity 

functions. So, coming back to the discussion, we have the time lag kernel which is fine 

as one-dimensional Fourier transform. The traditional one-dimensional Fourier transform 

of this free f kernel or the waiting kernel with help of this,  I can rewrite the Cohen’s 

class as one-dimensional fourier transform of a generalized auto-correlation. 

Notice that this big R is not the instantaneous auto-correlation. It is actually the 

generalized auto-correlation, right. So, there are different terminologies here. 

Instantaneous auto-correlation is simply the product of x of tau minus t by 2 times x star 

of tau minus t by 2. When I integrate the instantaneous auto-correlation, I get the regular 

auto-correlation, right and to see that let us just workout the couple of derivations. Just 

assume expressions and it will be clear what instantaneous auto correlation is. What is 

auto correlation? What is generalized auto-correlation? 
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So, the instantaneous auto-correlation is x of tau minus t by 2 times x star. So, this 1 of 

tau plus t by 2 times x of x star of the tau minus t by 2. In fact, rather than looking at this 

as tau plus t by 2 and tau minus t by 2 with the change of variable, you could also rewrite 

this as x of tau times x of x star of tau minus t, right. In fact, this t is the dummy variable 

here. This is only telling me what the distance between these two observations is. That is 

in terms of sampling instance. You can think of t s lag l also. Now, the general, the 

regular auto-correlation is an integral of this instantaneous auto-correlation, right and the 

integral being here with respect to tau itself that is a regular auto-correlation and then, 

you will have the generalized auto-correlation. So, instantaneous and the regular auto-

correlation which is based on the definition of the regular auto-correlation, we have seen 

early in unit 2. 

Now, you have the generalized auto-correlation. So, you could interpret the Wigner-Ville 

and Cohen’s class in terms of all of this, but the most convenient one of the most 

convenient ways is to interpret the Cohen’s class in terms of the generalized auto-

correlation. I have given an expression for the generalized auto-correlation for you in the 

bottom most equation, where I have in addition to this a function. Another function that 

has come up which is gamma, right and let us talk about it. 

So, this gamma is what gives the generalized nature to the auto-correlation. When I said 

gamma equals 1, then I recover the gen regular auto-correlation, alright and that is how 



things proceed. So, the message now is Cohen’s class is the Fourier transform of a 

generalized auto-correlation. Wigner-Ville distribution is the Fourier transform of the 

instantaneous auto-correlation, right. That is how it is going to be. Well, the 

generalization I have, we have also seen the generalization in the previous slide. 


