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Lecture - 6.4 

Discrete WVD 
 

Hello friends welcome to lecture 6.4 on the topic of Wigner-Ville distributions. In the 

previous three lectures we have looked at the, definitions of Wigner-Ville. Studied the 

theoretical properties, and looked at illustrations of Wigner-Ville on few standard signals. 

Where we also learn that, there are a few drawbacks with Wigner-Ville that we would 

like to address, but before we do that, it is useful to know how the Wigner-Ville itself is 

implemented in practice, and that is the subject of this lecture, where we are going to talk 

about discrete Wigner-Ville distribution. 
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In particular, we look at implementation of Wigner-Ville, for sample data of course, and 

that is what we call as discrete Wigner-Ville. In fact, this terminologies analogs to, the 

discrete Fourier transform, where we compute the Fourier transform on finite length 

data, over a finite grid of frequencies. And the issues are more or less the same, but 

there’s is an additional complexity associated with Wigner-Ville. Also we whatever we 

are going to discuss, although it is being discussed in a context of Wigner-Ville. It is 

equally applicable to the smooth versions, and the modified Wigner-Ville that we shall 



learn subsequently. Therefore, it is good to know, how this issues are addressed in the 

Wigner-Ville, because the theory also is, fairly easier to understand. Once we go to the 

smooth ones, then it is difficult to follow what is happening, there is a lot more math 

there. 
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So let us look at the prime question of interest in this lecture. The continuous time 

Wigner-Ville is given by this definition. This is again something that we have seen in the 

lecture 6.1. And the two questions that we want to ask this, how do we sample this 

Wigner-Ville  in time and in frequency, because its theoretical definition, is define over a 

continues domain of time and frequency plane. Essentially, we want to know what 

should be the sampling interval for both tau and chi; that is the time and frequency axis. 

And is there any issue, other than any challenges in evaluating the Wigner-Ville for finite 

sample data. At this moment of course, the natural question that arrives is, why is this 

special questions to ask, or why does is deserve special attention. Cannot we use the 

same ideas, that we have used in short time Fourier transform, where we sample the 

time, in the same way as we sample time for the signal itself. So, the spacing in time for 

the short time Fourier transform, is exactly the same as for the discrete time signal.  

There was nothing to be really worried about. The only concern was phasing in 

frequency, but then, because short time Fourier transform involves a Fourier transform of 

the segmented signal. We good simply borrow ideas from d f t, and therefore, there were 



no specific issues to be addressed. Why does Wigner-Ville distribution, or why does the 

sampling of Wigner-Ville distribution call for a special attention. Well the prime reason n 

is, that Wigner-Ville distribution is a non-linear function of the signal. In fact, just look at 

the equation one; it is fairly clear that it is a quadratic function of the signal, which 

means it is a non-linear function. Whereas, a short time Fourier transform is a linear 

function of the signal. 
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Whenever you are sampling linear functions of the signals, you are ok with using the 

sampling theorem that we used for, the signal itself, in a sense that whatever sampling 

frequency, or the sampling interval I choose for the continuous time signal. I can use that 

for the transform as well, but in the case of Wigner-Ville, that is not the case, because I 

have a non-linear function here, and will try to understand why this non-linearity 

presents a challenge, or an additional issue. First let us rewrite the definition of Wigner-

Ville in this fashion, where I replace t by two with t, and therefore, I have a two 

appearing in front of the integral, and the z becomes two z here, that is the way you can 

look at it, but the rest of the expression looks the same. And when I write this for discrete 

time signal, the integral is a replace by summation, and now I have t s appearing, because 

d t is t s now, which is a sampling interval. And z is replaced by the normalize frequency, 

exactly the same way that we saw for discrete time signals, when we move from 

continuous time to discrete time. We move from continuous frequency, or the frequency 

for the continuous time signal to the normalize frequency. So, we move from z to omega, 



and or omega for the rest of the discussion, is the normalized frequency, which is z over f 

x. Omega has now the units of radians per sample. 
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Now, the main point, is that the Wigner-Ville is periodic in frequency; that is in 

frequency omega with a period pi unlike the short time Fourier transform. The short time 

Fourier transform, has the same period as a Fourier transform itself. There is a discrete 

time Fourier transform, whereas, the Wigner-Ville has period of pi in frequency. Now 

how does it make a difference. Let us look at this example, and understand the 

consequences. In the example we have a signal x, and I have let us say a transform 

version of that, which is we call as y, and the transform is simply a quadratic. So, that 

this example is more consistent or closer to what we do in Wigner-Ville. For the purpose 

of discussion assume, that the signal x is a sine wave. So, what I am doing is, I am taking 

a sine wave and squaring it. And the question in hand is, whether it is right to sample x of 

t, and then construct the transform, or directly sample the transform itself. That is exactly 

the question also we have in Wigner-Ville. Should I sample the signal, should I decide 

the sampling for Wigner-Ville based on the sampling of the signal, or should I decide the 

sampling for y based on the Wigner-Ville distribution itself. Now to get a feel for the 

answer to be actual question. In this example, observe that is the square signal is, twice 

the bandwidth of the original signal. Well that is always the case, not only in this 

example, whenever he was squaring the signal, the bandwidth of the squared signal is 

going to be twice, that is because; look at x, x is a sine wave of frequency omega naught, 



and y would be sine square, and using trigonometry identities I can always right sine 

square as 1 minus cosine 2 omega t by 2; that is half of that.  

Therefore, the frequency in y is double, and therefore, the bandwidth is also double. 

Consequently whatever sampling rate I am using for x, has to be double when it comes to 

sampling y, because sampling theorem is based on the frequency content of a continuous 

time signal, and the sampling, the maximum frequency in y. At least in this example is 

two omega naught, whereas, the maximum frequency next is omega naught. Therefore, 

whatever sampling rate that I choose for x may not be applicable to y, because I can I can 

choose for example three omega naught to sample x; that is not enough to sample y and 

avoid aliasing. So, the bottom line is, to avoid aliasing of, in sampling y; that is a 

transform x or the quadratic transformed x. I need to choose a sampling rate for y it is 

twice the sampling rate that I choose for x, and that is the same story for Wigner-Ville as 

well. Of course, I am arriving at this result in an intuitive way with the help of an 

example. There are formal proofs available in the literature, and I will give you reference 

to look up this formal proofs. 
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Before we talk about the further remedies or other possible remedies, let us take an 

alternative view point, which kind of hints the same thing that we learnt just now, that I 

need to sample the quadratically transform signal twice, as that of the signal itself. So, 

again begin from the continuous time or continuous Wigner-Ville distribution. Its 



continuous in both time and frequency, and right this integral for a finite length sample 

signal, assume that you have n observations, and that you have obtain this discrete time 

signal at a sampling frequency f s. The integral now takes the form of the summation, 

where this summation index runs from minus n to n minus 1. And, importantly observe 

that to compute the discrete Wigner-Ville. Now it is both discrete in time and frequency, 

like the d f d. To compute that I need the values of x at fractional instance. Exactly half 

the mid wave between the instance. Particularly when p is odd I require that right. So, for 

example, I would need values of the signal at 0.5, 1.5, 2.5 and so on which I do not have, 

because I am only have the values of discrete time signal at 0 1 2 and so on. So, how do I 

generate these values. Well there are two possibilities; one is interpolation, where I do 

not have access to the continuous time signal; therefore, I can go and re sample at a 

faster way.  

So, I would interpolate, and how is interpolation typically done. Will you take the 

discrete Fourier transform of the sample signal, the finite length sample signal, pad it 

with the required number of zeros at the highest frequencies. Why highest frequencies, 

because the new signal which we call us x tilde, which will be of size two n, where it will 

also have values at exactly mid wave between the sampling  instance, is going to be of 

higher frequency. I have now samples more frequently than the original one. Therefore, 

the x tilde as going to be of higher frequency content; therefore, I have to actually 

concentrate on moderating the, or modifying the high frequency content of x, which is 

the original signal that I have. So, I pad this d f d of x with the requisite number of zero’s 

at higher frequencies, perform Fourier inversion, and then get my x tilde; that is one way 

of interpolating. Of course, if I have access to the continuous time signal itself, I would 

go back and sample x twice as that, that I did previously which is at f x. I would go and 

sample x 2 f x. And then I would get the values at the intermediate instant as well. So, 

both methods are telling me that I need to acquire the value of the signal at twice the 

sampling rate as I have chosen, which is the same massage that we learnt just now, where 

we took different perspective. So, both perspectives are giving me the same answer 
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Therefore we have these three remedies, to avoid spectral earlier aliasing of Wigner-

Ville. Once I generate this 2 n observation of x from n observation, or once I have the 

sample x at faster rate 2 f x, then the frequency grid, the choice goes along the same lines 

as d f t itself, I would choose one over 2 m as a frequency grid. So, coming back to the 

remedies now, based on a discussion just now. To avoid spectral aliasing, either I should 

over sample the signal by factor of two, which is only possible if I have access to the 

continuous time signal, and that may not be true for most situations. Then the second 

remedies to interpolate at mid points, which is fine, it fixers the problem, but there is an 

additional problem, which is speculate to Wigner-Ville, which is a problem of 

interferences. And the third remedy is to use analytical signal. Now this is a bright idea, 

because the moment I construct the analytical associated of a signal, I would be reducing 

the bandwidth by factor of two. Recall that whenever I construct the manual take 

associate of a given signal, I am giving two zero out all the frequencies in the negative 

frequencies, and that immediately brings on the bandwidth by a factor of two.  

And because I am bring now the bandwidth of the signal by factor of two, multiplying 

that by 2. Now for the analytic signal, gives me the same sampling frequency at which I 

have already obtained the data. Therefore, I do not have do any re-sampling or over-

sampling and so on or interpolation, I am fine. So, the analytic signal will reduce a 

bandwidth. The previous two basically, not touching the bandwidth, but trying to address 

the sampling frequency itself. The positive side effect of using the analytic signal is that, 



I can reduce a number of interferences. Recall the example that we had in the previous 

lecture, where we had a comparison of Wigner-Ville on real representation of the signal, 

and analytical representation of the signal. In the real representation the number of cross 

terms, is going to be higher, because any real valued signal can be expressed as a sum of 

two complex exponential with negative frequencies. And I know from the property of 

Wigner-Ville that whenever I have a sum of two frequencies, I am going to have 

interferences.  

Therefore, if I user real value representation, the interferences are going to be more, 

because a number crossed on is going to be more; whereas, with an analytic version I do 

not have that issue. So, looking at all days, the recommendation that comes down to as, 

is that we should work with analytical representation, which will take care of both 

spectral aliasing, as well as the detection in the interferences. As I said, we have arrived 

at this recommendation based on intuitive arguments; of course, theoretical findings, but 

we are not formally proved anything. So, if you want to see formal proofs, you can refer 

to this short note or short corresponding by Boashash in 1988, and Boashash is the 

prominent name in time frequency analysis, or refer to the book edited by this two 

gentleman, which gives you very nice proof and insights into the implementation of 

discrete Wigner-Ville.  
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We will conclude the lecture with an example, to reinforce the point that we are just 

discussed, where we will show how the analytical representation solves both issues. And 

this is in fact, an example that we are seen earlier, where we have two amplitude 

modulated sine waves of low and high frequencies. In fact, of frequencies  0.15, center 

frequency 0.15, and center frequency 0.32 as you can see from the comment here.  Now 

the amplitude modulation is a Gaussian amplitude modulation. If I use a real 

representation for the signal, and I look at the Wigner-Ville distribution, I can see these 

four atoms here in the time frequencies plane. In addition to that I have these 

interferences, coming out of the interactions of this four frequencies or center frequency 

atoms. Now why do I have four, when I have only two frequencies in the signal. The 

main reason is, let us look at the first one. The center frequency of the first atom here is 

0.15, but because I am using the real representation. Remember a sine of frequency 0.15. 

Underline is a sine wave, it is only that you see an amplitude modulation. So, sine of 

0.15 can be written as e to the j 0.15. Let us e to minus j 0.15, and e to the minus j 0.1 0.5 

will manifest as e to the j 0.35 with respect to the 0.5 limit that you have. And also mind 

you that I am only showing you the positive frequencies; in fact, you will see the same 

thing happening in the negative frequencies as well.  

So, the same argument can be applied to the high frequency modulated atom, whose 

center frequencies 0.32, so you have 0.32 here, and therefore, you have 0.18 appearing as 

a reflection about 0.5, and you would see a minus 0.18 also, appearing in the negative 

frequencies. So, the real representation produces this spurious frequencies, which are 

essentially alias reflections around 0.5, and then you have interferences arising out of 

this. Whereas, analytic representation avoids all of this spurious artifacts, and 

consequentially the interferences are reduced. You have only a single interfering term 

here, which as we have learnt earlier, lays mid wave in the time frequency plane between 

these two atoms. So, this hopefully has now help you appreciate the need for analytical 

representation when you are working with Wigner-Ville distributions. Earlier we had 

seen this in the context of reducing interferences, but now it has reduced spectral aliasing 

and interferences, this is for wavelet (()). 
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With that example we draw or lecture to a close. I suggest that you read the two 

references that I have mentioned earlier, to get a more formal insight, and look at the 

formal derivation, for the recommendations that we have given in this lecture. And the 

other point that I would like to read write is, we have discussed this in a context of 

Wigner-Ville, but the same applies to other modified and smooth Wigner-Ville  

distributions as well, which we will start looking at in the next lecture. 

Thank you. 

 


