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Lecture - 6.1 

Wigner-Ville Distributions 

 

Hello friends, welcome to lecture 6.1. With this lecture we are going to start our journey 

on Wigner-Ville distributions. In the previous unit we discussed at length the concept of 

short-time Fourier transform, the spectrogram, its properties, its limitations, its uses and 

also how you could use a spectrogram for denoising. 

(Refer Slide Time: 00:49) 

 

In this unit, we are going to focus on the Wigner-Ville distribution and its variants. And 

in this lecture what we are going to do is, we are going to look at the definition of 

Wigner-Ville distributions. Although I say properties here, primarily what I am going to 

do is illustrate how the Wigner-Ville distribution works out for different classes of 

signals, and towards the end we will show that the Wigner-Ville distribution results in 

interference, which is something that we will work on in the next lecture in 6.2. 
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So, let us get going. Before we look at the definition of Wigner-Ville distribution, it is 

useful to recall that there are fundamentally two ways of calculating the energy density. 

Whether it is a joint energy density or just the energy spectral density that we calculate 

using Fourier transform, there are two routes. The first route being transform the signal, 

and then identify some kind of functional operation, typically quadratic magnitude 

square to get the energy density. Of course, justification has to be provided why that 

functional will return, result in energy density. The second route is to compute the auto-

covariance functions if you are looking at purely energy spectral density. But if you are 

looking at joint energy density, we are interested in computing the local auto-covariance 

function, and then take a Fourier transform of the same, which is essentially an extension 

of the ((Refer Time: 02:16)) to the time-frequency plane. 

Now, as we have noted on several occasions, spectrogram and scalogram belong to the 

first category. In spectrogram, you take the short-time Fourier transform and then 

compute the squared magnitude. And in a scalogram, the story is the same, compute the 

wavelet transform and then take this squared magnitude of the wavelet transform. 

The good thing about adapting this strategy for constructing the joint energy density is 

that you have a non-negative energy density, which is one of the key requirements that a 



joint energy density should satisfy to make some sense. However we lose out on the 

marginality properties and we have mentioned this even in the case of spectrogram. And 

early on when we talked about the basis of time-frequency analysis owing to Wigner’s 

result who showed that there exists no positive quadratic distribution that can satisfy the 

marginality property. 

So, what about Wigner-Ville distributions? Wigner-Ville distributions takes a second role 

and this again we have noted earlier as well, that is it computes a local auto-covariance 

functions and then takes a Fourier transform. As a result, by virtual of Wigner’s own 

result it satisfy several key requirements, especially marginality, but unfortunately it is 

not guaranteed to be non-negative for all signals in the entire time-frequency plane. For a 

specific class of signals, may be the WVD can turn out to be non-negative, but not 

necessarily for all signals. So, why should we really study Wigner-Ville distributions is a 

question if it is point to be non-negative. 

Well, what happens is, although it does not guarantee a non-negative energy density or 

distribution, the good thing about it is, it serves as a prototype for several other 

distributions that came along. The moment Wigner-Ville distribution came about in a, in 

the limelight, several other distributions as variance of Wigner-Ville distribution in an 

attempt to improve its properties or retain its properties have come about and the 

unification of spectrogram, scalogram and the Wigner-Ville distribution came about. So, 

that is a fantastic result. Therefore, it is good for pedagogical reasons at least to start off 

with Wigner-Ville distribution and then gradually see how we can make improvements to 

this. And one path of improvement leads to spectrogram. The other path of 

improvements leads to scalogram that is the idea. 
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Now, let us move on to the definition of Wigner-Ville distribution. A quick historical 

background, Wigner conceived this distribution in about, in around 1930s in the context 

of quantum thermodynamics. And Ville, who was interested in signal processing and in 

signal analysis, about 15 years later, roughly rediscovered this in a context of signal 

analysis where he was interested in estimating the instantaneous frequencies from the 

joint energy density. 

In fact, we will see later on, that this Wigner-Ville distribution gives us a nice estimate of 

instantaneous frequency in a sense, that the average frequency that you compute from the 

Wigner-Ville distribution is nothing but the instantaneous frequency itself, whereas for 

the spectrogram and scalogram you would have to compute ridges. So, now you 

understand why the name Wigner-Ville, although their discoveries for 15 inventions are 

15 years apart. 

So, look at equation 1, it gives you the definition of the Wigner-Ville distribution. It is a 

single integral. Unlike the short-time Fourier transform, here the integral directly gives 

me the energy density. Again, compare in spectrogram, you will have to compute the 

short-time Fourier transform and then take the squared magnitude. Here you do not, do 

you, you compute the energy density in a single step. What you are doing here is, you 



have a product of x of tau plus t by 2 times x star of tau minus t by 2 and Fourier 

transform of that is being evaluated, right. 

And what I give you in equation 2 is the frequency domain version of the same results. 

So, you can compute Wigner-Ville distribution, either in time domain if you know the 

time domain expression or if you know the frequency domain expression, you can 

compute that in frequency domain. Again, this is in a theoretical definition. Later on, we 

look at the practical aspects of Wigner-Ville where I will give you expression for 

computing Wigner-Ville based on sample data. 

Now, what is happening here, that is, that is very important to understand rather than just 

looking at integral or getting intimidated by it. First point to observe is, that this is a 

quadratic or bilinear energy distribution because you are involving a product of signal 

with itself. So, there is a product of two terms x of tau plus t by 2 times x star of tow 

minus t by 2 and I use a subscript x, x to indicate that you are evaluating this energy 

density or auto energy auto joint energy density for the signal. You could therefore, 

conceive of a cross joint energy density as well. So, that is the first thing. 

And secondly, that which is very important is that Wigner-Ville distribution is a Fourier 

transform of a local auto-covariance or autocorrelations. If you talk to a signal 

processing person, you would like to call this as autocorrelation. Strictly speaking, by our 

definition this is actually a local auto-covariance. Look at the similarity of this 

expression here with the definition of auto-covariance that we had for the energy signals, 

aperiodic energy signals. The only difference is, this is the local one, instantaneous; you 

can think of an instantaneous auto-covariance also. 

So, let us understand what is happening here. Physically, when I am computing the 

Wigner-Ville distribution, I need to understand what is happening like in the short-time 

Fourier transform. I know what I am doing. I am essentially breaking up the signals into 

a bunch of sine waves and determining how much each sine wave is present in the signal 

and at what time. 
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Here what we are doing is, if you look at a product in the integral what we are doing is, 

at any point in time I am looking to the left and to right of the signal. Assume, that the 

signal is real, therefore x star is nothing but x itself. So, for real valued signals, I am 

looking to the left and right of the signal over the same duration and then folding, that is, 

I am actually computing what is the extent of overlap between these left and right 

segments. And I am not just looking at one segment, I am looking at all possible 

segments with respect to tau. So, let me show this to you or illustrate this to you on the 

board. 
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Let us take the signal here. So, let us say I have some signal, need not be periodic. What 

is happening in Wigner-Ville is, that let us say, I am standing at tau, this is the tau and 

looking to the left, let us say this length is t by 2 and I look to the right or for the same 

length. This is t by 2 and at this point. So, you can say that our dummy variable right 

now is, of course, t. 

So, I am standing at time tau and I am looking to the left and right and asking, what is 

the extent of overlap between this segment here and this segment here. If there is any 

similarity, it will show up, even though that property may not be holding this tow. So, 

that is one of the drawbacks of the Wigner-Ville distribution as we will see later on, 

which does not give it the finite support property and so on. But that is the point you are 

essentially looking at, similarities between the segments to the left and right and over the 

entire duration. Of course, that entire duration makes it also non-local. Look at the 

integral. So, we have this integral. If you look at it carefully you realize, that it is 

essentially looking at all possible segments and it is giving uniform weighting to all the 

segments. That should not be the case if I am standing at tau. I should give more 

importance to the local properties. If I truly want to get the local properties at tau, I 

should give more importance to the segments here and less importance to the segments 

that are far away from the tau. But the original Wigner-Ville distribution did not do that. 



It essentially, gave uniform importance to uniform weighting to all the segments and that 

kind of spoils some of the properties of Wigner-Ville distribution. 

Later on, we will study what is known as a pseudo Wigner-Ville distribution, which 

applies a window on top of the Wigner-Ville distribution so that the window function 

will give more importance to the segments close up to tau and less importance to the 

segments for away from tau. So, that is the physical interpretation that we have and this 

interpretation can be applied in the frequency domain as well. If you look at the equation 

2, the arguments are more are less the same, despite some of these drawbacks it has some 

beautiful properties as we will learn today and that is in this lecture and also the next 

lecture. 
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So, let us get a feel of what is happening. Remember, the purpose of studying this 

distribution is to get the local features of the signal in the time-frequency plane. So, we 

would like to know what is happening in the time-frequency plane, what cap, what 

features does it capture, how does it capture, is there a, is there a smearing of the energy 

like we saw in the spectrogram or is there not. 

Now, as I show this to, on the slide, theoretically Wigner-Ville distribution of, as 



excellent time-frequency support, which means it does not smear the signals energy in 

time or frequency and you can show this mathematically. If I use this signal here, x of t 

as a, as a drag, located center at t naught, then the Wigner-Ville is also exactly centered at 

t naught. It is also an impulse. The most important thing is, not just centered around t 

naught, at t naught, but that it is also an impulse. 

So, an impulse in the signal domain translate, transfers to an impulse in the Wigner-Ville 

or the joint energy time-frequency plane as well and I show this to you as a way of 

illustration here, by way of illustration and the MATLAB code is given to you. I am 

using the time-frequency tool box once again. F m constant generates signal. Of course, 

here first I am showing the sine wave of the complex exponential, but let us look at the 

later part of the code and generating an impulse here. And I am computing the Wigner-

Ville distribution of the analytic representation of the signal. It is important to actually 

use analytic representation if you want to use this routine from the time-frequency 

toolbox. 

So, you can see clearly, that WVD has an excellent time localization. Compare this 

situation with what we had with the spectrogram. This, the time resolution of the 

spectrogram was limited by the window. Any windowing method will suffer from the 

drawback, whereas Wigner-Ville distribution does not. In fact, there is something else 

that learn by going back to the integral. Here, we are not definitely applying any 

windowing technique to the signal. We are not windowing the signal and then 

transforming. We are directly computing the energy density. 

Now, early on, when we talked about time-frequency analysis and basis functions and so 

on, we said there are two classes of basis functions, fixed basis and adaptive basis for the 

purpose of signal analysis. Although Wigner-Ville distribution does not really involve a 

transform, sometimes it is argued, that there is transform involve of the signal. So, let us 

assume, let us do a change of variable here. You can set tau plus t pi 2 as some other 

dummy variable t prime. Then, you can think of this Wigner-Ville distribution as a 

transform of the x of t plane with a basis e to the minus j t zee times x star of return 

dummy variable here. So, a basis functions is not just e to the minus j tau zee, but also 

times this. 



Now, this factor in the basis functions comes from the signal and therefore, Wigner-Ville 

distribution sometimes conceived as a transform of the signal with an adaptive basis. The 

adaptive term coming from the fact, that the basis is derived from the signal itself unlike 

in Fourier transforms where the basis is fixed a priory that gives certain advantages to the 

Wigner-Ville distribution. Whereas, in the case of Fourier transform or wavelet transform 

or short time Fourier transform, the basis are fixed, and there are some disadvantages. 

But of course, advantage is, you know the basis a priory, you know the properties. 

Therefore, once you break up the signal into the difference components, it is easier to 

interpret them. Whereas, in the Wigner-Ville distribution you do not know the basis a 

priory, and therefore you have to interpret everything after performing the transform and 

keeping the signal in mind. 

So, the point here is Wigner-Ville distribution offers excellent time resolution compared 

with the spectrogram. And likewise, in the frequency domain as well I have a complex 

sine wave here, plug that complex sine wave into the theoretical definition, you will be 

able to show, that the Wigner-Ville is once again at ((Refer Time: 17:43)) in the 

frequency domain centered at omega not where omega naught is the frequency of the 

signal itself. 

So, I have on illustration for you of this fact. I have a sine wave. Once again I am using 

the time-frequency toolbox and I show you to Wigner-Ville distribution, it is highly 

localized. Think of this, obtaining this with the short-term Fourier transforms. I can do 

this, but I have to use very wide window. In fact, only may be Fourier transforms will 

give you such kind of resolution exactly what Fourier transforms gives you theoretically. 

So, here there is no concept of windowing. I do not have to break my head on 

determining what is an appropriate window length, and so on. It is all built in. 
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And the main point to remember is, that the Wigner-Ville is ideal for chirps. Once again 

we can verify this by writing the expression, the theoretical expression for linear chirps. 

You should be able to see, that is, the linear chirps once again because the phase of the 

signal is a quadratic function of time. And the Wigner-Ville of this linear chirp is a dirac. 

In what sense it is a dirac? Not in the regular sense, it is a dirac along the line of an 

instantaneous frequency. Earlier when I had a sine, it was a dirac in the frequency itself, 

regular Fourier frequency. Now, it is a dirac in the instantaneous frequency. 

Note, that the instantaneous frequency of the signal is beta t, sorry, alpha t plus omega 

naught. So, that exactly what is showing up here and the distribution is therefore, 

perfectly localized along the instantaneous frequency. Once again I show you the, I 

illustrate this fact for you using the time frequency toolbox. The fmlin generates the 

complex linear chirps and therefore, you do not have to take in a hilbert transform or 

construct an analytical representation. 

I have the Wigner-Ville distribution here. It just looks beautiful and very attractive. It is 

very nice, right; it is too sweet, in fact. Compare this with what we have for the 

spectrogram or in fact, I would recommend that also you try this with wavelet, that is, 

generate a scalogram. Either way, there is a heavy smearing of the energies. In fact, you 



should construct a scalogram, you should expect that smearing will be higher in the high 

frequency region because wavelets have poor frequency localization in the high 

frequency region and good frequency localization in the low frequency region. So, I 

leave that as an exercise all you have to do is generate the signal and run tfrscalo and you 

will be able to generate the scalogram great. 

(Refer Slide Time: 20:32) 

 

So, now what about a modulated chirp? Again, the modulated chirp is special, first of all 

because the WVD provides an excellent resolution of the modulated chirp. What we 

mean by the modulated is amplitude modulated chirps. I have taken this chirp signal, for 

example, here and multiplied this with a Gaussian wave, Gaussian amplitude modulation 

that only exits over this period of time as result of which I have this amplitude modulated 

chirp. 

The Wigner-Ville looks very nice because it has perfectly localized the frequency as well 

as the time. Everything is nicely captured. Compare this with what scalogram computed 

with the modulated wavelet provides for you. In this scalogram as well there is nothing 

to clear on as far as windowing is concerned. This spectrogram, at least, you may have to 

play around with the window. But again, I invite you to compute the spectrogram with 

different window lengths and see if you can get as fine as an energy density, that Wigner-



Ville gets for you, that I show here right now. The specialty, the second specialty of this 

modulated chirps within the context of Wigner-Ville is that this is the only signal for 

which Wigner-Ville is non-negative in the entire time frequency, great. 
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So, we have lot of things to boast about Wigner-Ville, but now you have this beast called 

interference. So, the Wigner-Ville is sum of two sine waves, shows interferences exactly 

mid-way of the frequencies. Now, that is both the good and bad, I tell you what is the bad 

news? The bad news is, of course, the interference. Once again I illustrate this for you 

first and then we will just quickly talk about the theory and wind up. 

So, I have generated two sine waves of frequency 0.1 cycles for sample and 0.2 cycles 

for sample. I have added them up, computed the Wigner-Ville. You can see this 

interference stem coming, appearing exactly at 0.25 frequency, sorry, cycles per sample, 

whereas a spectrum does not contain it. So, it is always useful to plot the spectrum by the 

side and the signal on the top so that you can make meaningful interpretations from the 

energy density plot, joint energy density plot. 

Now, why does this happen? Because in general, if I have two signals, then the super 

position of the Wigner-Ville of a, super position of these two signals involves the sum of 



the Wigner-Ville’s respective components and a cross term, which involves the cross 

Wigner-Ville term. In fact, two times the real part of that. Therefore, Wigner-Ville is 

always real. Although I have not mentioned that early on, the Wigner-Ville is always 

real. It does not mean it is non negative, but it is real value. 

This term here, the third term, the 2 times real part of the W 12 is the one that causes the 

interference. The good news is, that I know exactly where the interference occurs. It is 

not going to occur arbitrary, at arbitrary locations. I will also show you this small 

animation in, in the coming lectures where we try to remove the interference stamp to 

show you, that the interference always occurs mid-way, whether in time or in frequency 

depending on how they add up and that gives me the key to eliminating the, to an idea of 

how to eliminate the interference stamp. That is the key, alright. 
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So, with this slide we will draw this lecture to a close, and once again I have a few 

references for you. These are more or less the same references that you have been seeing. 

So, what we have learnt is, what is the definition of Wigner-Ville, how it is different 

philosophically from spectrogram and even scalogram, and that it has certain very nice 

features. We have not studied thoroughly all the properties. In the next lecture, we will 

examine the joint energy density for the all the properties that an energy density should 



have. It has some beautiful properties, it is ideal for chirps and so on, modulated chirps, 

but there are going to be interferences and we have to see how to get rid of this 

interferences from the Wigner-Ville distribution. So, hope you enjoyed lecture. We will 

meet again in lecture 6.2. 

Thanks. 


