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Hello friends, welcome to lecture 4.5 on the course on introduction to time frequency 

analysis and wavelet transforms. So, in this lecture, we are going to talk about the 

requirements of time frequency analysis techniques. Until now, that is in the previous, 

until the previous lecture we have studied the theoretical properties of energy densities. 

In particular, we have studied the duration band width principle; of course the definitions 

of duration and bandwidth as well.  

So, now it is time to plunge into the techniques themselves; especially, the short time 

Fourier transform, the Wigner Ville distribution and the wavelet transform. But before 

we plunge into these tools, we should ask what do we except of them? What is typically 

expected of a time frequency analysis tool that I am going to use? 
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And we are going to not list out all the requirements; we will list out the requirements 

with respect to specific applications. But these are broad applications namely feature 

extraction, secondly - filtering and de-noising, and thirdly - signal compression. The last 



2 are closely related that is the filtering and signal compression, but feature extraction is 

a totally different set of application. Now, in feature extraction, normally we construct 

joint energy density, pretty much like what we did in Fourier analysis; when I want to 

extract the oscillatory features, I construct this spectral density and I search for peaks in 

the spectrum, and so on.  

Likewise here in time frequency analysis when I am looking at feature extraction then I 

would construct a join energy density, and search for the required features in the joint 

energy density plot. Now, of course, once again there are several ways of constructing 

this joint energy density depending on the tool that you are using. But then to be able to 

make meaningful analysis from the joint energy density plot, we should require that these 

techniques theoretically satisfy certain properties. And what we will learn at the end of 

the lecture is that there is no tool out there which will satisfy all the requirements that we 

stipulate.  
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Regardless of the application that we are looking at, that is whether it is feature 

extraction, filtering and de-noising, or signal compression, or approximation and so on, 

there are fundamental limitations to what we can do. And we have discussed this before; 

we have seen this before. The first limitation, obviously, being governed by the duration 

band width principle, which essentially says that I cannot construct a joint density that is 

very finely localized in both time and frequency. 



If the joint density is narrow in time, it has to be broad in frequency and vice versa. This 

does not mean that I will not be able to locate the frequency component and so on. This 

is unfortunately the machine reputation that it leads to. How you locate a particular 

frequency, how you extract this information, depends on further coarse processing that 

you do of the joint energy density.  

But, ((Refer Time: 03:37)), what is happening is that, the joint density is going to be 

finely localized only in one dimension. Now, of course, different techniques will give 

you different trades on the localization. And which technique is suited for a particular 

application depends on the signal characteristic and so on. This aspect will become 

clearer when we discuss these specific techniques. 

The second limitation is governed by the non-additivity of spectra which I had 

mentioned in one of the previous lectures. Here, I have an illustration for you. I have 

here, on the left top 2 panels, I have 2 signals which are chirps, one dice down after 

while and the second one starts of after while before being inactive. Now, when I look at 

the spectra of these 2 signals I have these spectra; they are, obviously, they have different 

frequency content.  

Let us say, I add up these 2 signals and I look at the spectrum of the added signal; that is 

now I have just simply numerically added these 2 signals. So, this spectrum of the added 

signal or the spectral density is actually shown here at the bottom. Above this bottom 

panel on the right hand side, I have the sum of spectra of the individual signals.  

If things were ideal in an ideal world, I would expect spectra to add up, so that when I 

look at these spectrum of the added signal there is no difference between the added 

spectra and spectrum of the added signals, and then there are no artifacts. Unfortunately, 

when I add 2 signals, I have what are known as interferences, right. And let me explain 

that to you; why, what is this interference term? Why does it arrive? 
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So, let us take a signal that is made up of 2 signals, x 1 and x 2; it could be even in 

continuous time as well, does not matter. Now, when I take the Fourier transform of each 

of these signals, discrete time or continuous time, by the linearity property the Fourier 

transform of the composite signal is the sum of the respective Fourier transform of the 

individual ones.  

Until here, things are alright, but when I am looking at the spectral density of the 

composite signal, and when I workout the math for this spectral density from the theory 

of complex numbers, I know that when I add 2 complex numbers, x 1 and x 2, are 

complex valued numbers. In the right hand side I will have the respective squared 

magnitude plus this term here. The cross term, let us say, I have here, theta of omega. 

This theta of omega is the phase between these 2 signals at that frequency. Unless this 

theta is 90 degrees, this is cross term will not vanish. 

In other words, if the signals are orthogonal or uncorrelated at that frequency, you will 

not have this spectrum of the, spectral density of the composite signal being the sum of 

the respective spectral density. So, this is the interference term that causes the appearance 

of spurious features in the spectral density, spectral plot of the composite signal that you 

see at the bottom panel on the right hand side.  

So, the appearance of this interference terms, in fact, causes problems in interpretations, 

because now I have spurious features which are purely artifacts of mathematical 



operations. They are not necessarily a part of the composite signal at all. And this is 

going to be the case in all time frequency analysis techniques because I am going to have 

typically non stationary signals where the frequency is changed with time. And this 

example is a representative of all those situations; and therefore you will run into 

interferences and so on.  
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So, let us look at first the joint density or the joint energy density. The motivation for 

looking at joint energy density is fairly obvious by now. In time, if I look at the energy 

density in time it gives me the intensity of the signal at time t. And if I am looking at the 

spectral density it gives me the intensity at particular frequency. And then the respective 

fractional energies in the interval or in the band can be computed. However, in practice, 

quite often I would be interested in knowing the intensity of frequency at a given time, 

and that is why I would need the joint energy density.  

As I mentioned early, on assuming that I am interested in extracting the features I am 

constructing the joint energy density. If I am interested in filtering, maybe I do not need 

to construct a joint energy density at all. I simply work with the transforms, perform 

certain operations in the transform domain, reconstruct, and I get the filtered component. 

There is no need to look at joint energy density at all. However, the principles governing 

the construction of energy densities or filtering or signal compression and so on, more or 

less are the same; that is the limitations governing these are more or less the same. 



So, coming back to the energy density, is it possible to construct an energy density which 

will give me this information? That is I would like to know the intensity of a frequency 

at a given time t. So, I am asking for a very fine localization in time and in frequency 

domain; and obviously, that is not going to be possible, given the duration bandwidth 

principle. That is the basic limitation that just comes into the picture immediately.  

And so therefore, I have to now step back and say, well, I am going to restrict myself to 

an interval in time or band of frequencies. Even there, what are the possibilities? What 

are the tradeoffs involved? And most importantly, what properties should the joint energy 

density possess? By properties what we mean is if there is a certain change in the signal 

that should be reflected accordingly in the joint energy density and so on. This will 

become clearer as we move along. 
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Before we look at the requirements of a joint energy density, what is important to keep in 

mind is, there are at least 2 different ways of constructing the energy density or even the 

power densities. One as a squared magnitude of a transform; we have seen this earlier as 

well in the Fourier analysis or a Fourier domain. We take the Fourier transform and then 

take the squared magnitude, that will give me the density. And this is the principle that is 

followed in constructing the spectrogram and scalogram.  

The other alternative is, by first constructing the auto covariance function and then 

taking the Fourier transform. In Fourier analysis, that is in pure frequency domain 



analysis, we would just construct the ordinary auto covariance function and then take the 

Fourier transform, and this is what we referred to us ((Refer Time: 11:38)) theorem and 

so on. A similar idea exists in time frequency analysis as well where we construct what 

are known as local auto covariance functions.  

Now, the auto covariance function is not going to be simply a function of a single 

quantity lag. It is going to be a function of 2 things, lag and the local time, but still I can 

take a Fourier transform of that and that will give me the local energy density in the time 

frequency plane. This is the idea that is used in Wigner Ville distribution, alright. Now, 

does it matter really how I construct these densities? Well, yes, because the properties of 

the resulting energy density can vary.  
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And one such property is the positivity which is the most important or non negativity we 

may say, because the spectral density can be 0. So, the appropriate term is non negativity. 

Now, the fundamental requirement for any density function to be meaningful is that it 

should be non negative value. And this depends on that is whether this property is 

satisfied by the joint energy density depends on how you have constructed the energy 

density.  

So, as we have just discussed, there are 2 different ways of constructing this. In the first 

method, I am manually constructing the energy density which means I take a transform 

and then take the squared magnitude; what is it mean? It means that I am guaranteeing 



non negativity because squared magnitudes of a complex number cannot be negative. 

Therefore, this property is immediately satisfied by spectrogram and scalogram. 

On the other hand, there is no guarantee that the direct construction method will give you 

a non negative spectral density in the time frequency plane. In the pure frequency plane, 

the real value and positivity is guaranteed by certain properties of the auto covariance 

function. But, in the case of the time frequency analysis, this is not necessarily 

guaranteed. In fact, the fundamental result proved by Wigner states that the positivity of 

a bilinear, bilinear means you can say quadratic; that is squad quantities of the transforms 

or where signals are appearing in multiples as products.  

Then, there when you look at the distribution that is constructed in a bilinear manner, 

there is no way actually you can guarantee positivity and other properties to be satisfied 

simultaneously. Particularly what Wigner said is, showed is, that the positivity of 

distribution or a density is very closely related to what is known as the marginality 

property, that we will study next. And this was the fundamental result, and it governs all 

the bilinear or quadratic time frequency distributions. The consequence of this will 

become more clear when we study the Wigner Ville distribution, but let us study the 

marginality property first.  
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So, what does marginality mean? Marginality essentially means that if I sum up the 

energy density in the time frequency plane along one dimension I should be able to 



recover the energy density in the other dimension. This term marginality is also 

encountered in probability theory and theory of random variables and so on.  

Now, just a word of caution, although I keep giving you the analogy with the probability 

theory, it does not mean that it is a prerequisite for understanding this course. I am just 

giving you this analogy, so that if you are familiar with probability theory you may be 

able to easily follow these things. But, you do not have to have a base in probability 

theory necessarily to understand any of the techniques that we are talking about.  

So, going back to the analogy of probability theory, we speak of joint densities in 

probability theory as well when we are looking at more than 1 random variable. There 

we have joint densities and the concept of marginal densities. When I integrate the joint 

density along one random variable dimension then I recover the marginal density for 

another dimension. So, the requirements are stated in equations 2 and 3. If I integrate the 

energy density along the frequency domain I should recover the energy density in time, 

and likewise for frequency. 

At this moment it may appear strange that there could be techniques that do not 

necessarily satisfy this. Why should they not satisfy? One quick way of understanding 

this is, remember techniques such as spectrogram and scalogram or energy densities 

resulting from spectrogram and scalogram are coming out of a manual construction; that 

is, you are actually constructing the energy densities. And remember, there is a certain 

windowing that is involved. And both these windowing and the manual construction of 

the energy density are the ones that can spoil these requirements. And they do, in fact, 

spectrogram and scalogram fail to satisfy the marginality conditions. Let me explain this 

to you with a simple example here. It is not a complete example but I will a take the 

support of this example to illustrate the point.  
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So, now, I have this signal coming from an industrial process. It is coming from a control 

loop. It is, the plot on the top is not the signal. It is actually the energy density in time 

such as squared signal itself. And the plot on left here of the left figure itself, is the 

spectral density. And here, the big plot, the 2 dimensional plot is the energy density in the 

time frequency plane where the energy is represented by the color.  

Now, obviously, the spectral density tells me that the signal is oscillatory, and of course, 

and also that there are some other accompanying frequencies but to a minor extent. The 

joint energy density here constructed from spectrogram, tells me something more than 

what this spectral density can tell me. It tells me that yes there are these frequencies 

present in this signal over these times, but the intensity of this frequency varies with 

time.  

So, you can see from changing colors here that the intensity is maximum here in this 

interval, and it is low here. In fact, there is a shift of frequency from this region to the 

main dominant frequency, and then another mild shift in the frequency. So, what is 

marginality requirement here mean, if I, let us say, I pick this dominant frequency, and I 

walk along time, add up all the energy densities that I have from spectrogram, I should 

be able to recover this peak here. Now, it turns out that it does not. And I will show you 

this in more in details when we talk about spectrogram, but that is what marginality 

requirement means.  



In fact, the other requirement is I pick a certain time t, and I walk along the frequency 

domain axis, add up all the energy densities, I should be able to recover the value of the 

energy density at that point in time. That is also not satisfied by spectrogram. Likewise, 

for the scalogram here as well; on the right hand side you have the scalogram. I have 

constructed this using the Morlet wavelet. Both these plots are generated using the time 

frequency tool box. The scalogram also fails to satisfy the marginality requirement.  

And of course, the other thing that you should also notice here is, the loss of localization 

in frequency. Look at how finely this spectral density is localized in frequency that is a 

Fourier spectral density. Whereas, whether it is a scalogram or the spectrogram there is a 

certain smearing of the energy; there is a spread of energy in the frequency domain. The 

localization is not as fine as what you see in spectral density.  

And again, this is the consequence of the duration bandwidth density. Because, I want 

one foot in time, I can only keep one foot in frequency domain, and therefore, I have this 

loss of localization. Remember, I do not use the term resolution; I am constantly using 

the term localization. So, hope, now that the marginality property requirement is clear. 
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A weaker requirement is that the area under the energy density should yield the total 

energy which is generally satisfied by all these techniques that we are looking at, 

whether it is spectrogram, scalogram or Wigner Ville, and so on. In fact, I should 

mention that Wigner Ville distribution satisfies the marginality property. I did not show 



you the Wigner Ville distribution for that example, but that is the beauty of the Wigner 

Ville distribution.  

But the biggest problem with it is, it is not, does not guarantee non negative spectral or 

the energy spectral energy densities. And that is what essentially Wigner’s result says, if 

a particular energy density satisfies the marginality requirement it cannot be guaranteed 

to have non negative value energy densities and vice versa. if it is satisfies the positivity 

or non negativity requirement then it cannot satisfy the marginality requirement.  

So, coming back to the total energy requirement, this is a weaker requirement because if 

the area under the energy density adds up to the total energy it does not necessarily mean 

that the marginality properties are satisfied. So, going back to this figure here if I add up 

the energy densities here and taking into account the windowing that I must have done in 

either in short time Fourier transform or constructing the or the wavelet transform.  

Once I take into account the windowing effect and I construct the total energy density, 

still, I will, then I will able to satisfy this requirement; it will add up to the total energy, 

but that does not necessarily mean that the marginality property is satisfied. And many 

densities satisfy the total energy requirement. This is a very important requirement; 

energy preservation is quite important; otherwise, then you would get absurd results as 

well. 
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Now, very often, in fact the purpose of time frequency analysis is to find the local 



properties of the signal in the time frequency plane. That is the most important purpose 

of time frequency analysis; otherwise, why would I break my head in evaluating this 2 

dimensional transform; I would simply live with the Fourier transform. Therefore, now it 

is time to talk about the local properties. What are these local, how are these local 

properties evaluated, in terms of the conditional properties.  

And specifically, you want to know, at a given point in time, what is the energy density 

in frequency? And if I pick a certain frequency, what is the energy density in time? So, I 

am specifying locally what is, I am asking locally what is happening. And to be able to 

construct this, we construct what are known as the local or the conditional energy 

densities. So, you can see here; please read s in place of p. So, I have here the local 

energy density of frequency at a given point in time.  

And this definition is along the same lines as what we have in probability theory once 

again, where the conditional density, f (x) given y, is f (x comma y) divided by f (y); that 

is exactly the expression that I have here; in place of the probability densities, I have the 

energy densities. Now, typically there are no specific requirements on these densities 

themselves, but these densities are used in computing the conditional quantity such as 

local averages and local spreads.  
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For example, I would like to know at a given time, what is a average frequency, right. If I 

pick a certain time t, I would like to know, what is the average frequency. Let me take 



you back to the example here, at a given time t; so let us pick this time here, 100, and I 

would like to know at this time what is the average frequency. Or, I pick another time 

here, 400; I would like to know, what is the average frequency? What is the use of this?  

This is of great use in fall detection in feature extraction; I would like to know how the 

features of signal are changing. And if I have a certain template in mind for normal 

operating condition and I compare these features with the template then I will able to 

detect the presence of any anomalies or falls and so on. So, that is the local average of 

frequency at a given point in time.  

Likewise, I can pick a frequency. So, I can pick for example, this frequency here, and ask 

what is the average time spend by this frequency, right. That is also important because I 

would like to know how long a frequency component persisted. It is very useful in 

biomedical signal analysis, process data analysis, all these features are very nice and they 

can be exploited in a very beneficial manner; that is exactly what we are evaluating here; 

the average frequency at a given time t and the average time spent by as a frequency 

component.  

If the technique is right; that is, if your energy density is good and so on, and has been 

constructed an appropriate manner, then these expressions should yield what are known 

as the instantaneous frequencies and group delays that we have seen already; obviously, 

because the average frequency at a given time is instantaneous frequency itself. Of 

course, instantaneous frequency is actually the frequency at a given time t.  

But, if I have a multi component signal that is if I have a many frequencies at a given 

time t, then the average frequency is nothing but the instantaneous frequency itself. If I 

have a single component at a given time t, it should actually yield instantaneous 

frequency itself; they should all match.  

Likewise, the average time spent by a frequency component is what we had defined as 

group delay before if you recall the particular lecture, then you should able to be verify 

that the group delay is nothing but the average time spent by that particular frequency 

component. And again we expect that the particular method that I am using for time 

frequency analysis will give me these results correctly.  

So, what I do is I construct the energy density, evaluate the right hand side; of course, 

replace the integrals with summations because I would not be able to compute the energy 

density over a continuum. So, I compute the right hand side and then I also compute the 



instantaneous frequency independently, and see if they both tally. So, that is how I would 

do it. Of course, the way instantaneous frequencies are computed with joint energy 

densities are slightly different, particularly for spectrogram and scalogram, using what 

are known as ridges and so on. We will talk about it later. 


