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Lecture – 3.6 

Hello friends, this is a MATLAB demonstration of the concepts that we learnt in lecture 

3.6, in particular the concept of periodogram. So, I am going to show you how to 

compute periodogram starting from scratch that is starting from FFT.  
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Although there exist a routine called periodogram in MATLAB that does for you, what I 

will do is I will show you how to do this by yourself and then you can compare the 

results of this with what periodogram gives you. I will briefly talk about what 

periodogram gives you, but I will not really walk through the routine and the utility, use 

of that routine in this session. So, this is an addendum to lecture 3.6.  

So, first what I would like to go over is the set of commands that are associated with 

generating the signals of interest. So, we are going to generate 4 different signals. The 

first one deterministic signals, the remaining two are noisy versions of the first 

deterministic signal that I am generating here, alright. In fact, the noisy version is slightly 

different; it contains 2 periodicities; so, sorry about that. So, let us look at these two 

deterministic signals. 



What I have is, the first signal is going to be generated at a frequency of 0.2, and so, is a 

second signal as well. The only difference between these two deterministic signals is the 

length. I have 100 samples of in the first case, and 107 samples in the second case; this is 

the reason why I have chosen these numbers. So, these are fairly straight forward 

commands to generate a sine wave of this particular frequency 0.2 cycles per samples. 

So, this 0.2 refers to the discrete time frequency of the signal. As I said in both cases the 

frequency is 0.2. 

Now, let us look at these two signals which are the noisy signals that I am generating. At 

first I generate the noise free signal which contains two frequencies of 0.1 cycles per 

sample and 0.25 cycles per sample. Again, there is a reason why I have chosen these 2 

frequencies. And, they are going to be, I am going to generate 100 samples of this mixed 

sine wave. And, I generate 2 noisy versions of the deterministic signal. In the first case, I 

am going to add mild amounts of noise; in the second case, I am going to add large 

amounts of noise.  

Now, the purpose of working with these 2 signals is to see how if I apply the concept of 

periodogram to noisy versions, what result comes out when I do that, because we have 

learnt periodogram purely for deterministic signals. So, let us generate the signals, as you 

know in MATLAB you can just divide your code into different modules. I am going to 

actually run this particular module itself or section itself; and, I have done that.  
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And, let me take you to MATLAB here.  
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It clearly shows, if I ask the list of variables it shows that it has generated x 1. Let me 

clear everything for you and then rerun, so that things are very clear to you; these are 

generated. So now, I have the signals x 1, x 2, x 3, which is the noise free version of the 

noisy signals; y 1 and y 2 are the noisy versions of x 3. So, this fact is verified. Now, let 

us compute the Fourier transform or the DFT using the routine FFT, and then compute 

the periodogram.  

So, FFT as I said is the routine that computes the DFT for you. You should look up the 

help on FFT to understand its syntax and the algorithm, and so on. So, I have computed 

the FFT of x k 1, x 1 here. Now, here, in the second line here, you should pay attention 

on line 18 in fact. I have, what I am doing here is, I am creating the set of frequency 

points as a result of computing this DFT via FFT. So, what I am doing is, the first 

frequency point is 0, and the second the interval is 1 over n 1; we have already seen that 

DFT computes with the frequency resolution of 1 over the length of the signal.  

The last frequency in my set is 0.5 minus 1 over n ideally, this should have been 1 minus 

1 over n, but because of the conjugate symmetry of the DFT, I only need to walk upto the 

half and look at the power spectrum. The power spectrum is going to be symmetric for, 

with respect to negative and positive frequencies. So, I am only walking upto the half, 

not exactly half, but 1 over n short of 0.5, and that is why I create the frequency vector 

this way.  



Then I compute the periodogram that is fairly straight forward. I take the magnitudes 

square of the DFT coefficients, divide by n 1. And then, I plot a stem plot. Stem plot is a 

correct one to do because the DFT is only computed at the grip points. The rest is all 

decoration of the plots, and prepare underscore figure is a routine that I have written to 

decorate it further, annotate it further, and so on. So, likewise, for the second signal as 

well. It is the same story. Let us generate these 2 plots and see what I get. So, this is a 

second plot that I have. 
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Let us look at the first plot. Let us magnify this. Now, this is the periodogram of the first 

signal. Remember, the first signal has a frequency of 0.2, and I had generated 100 

samples of that signal. The periodogram correctly detects the frequency component of 

the signal. It says, exactly at 0.2 there is a p l square the DFT is 0 or the periodogram, 

power spectral density is 0; or, you can say, the power is 0. So, that clearly tells me that 

there is a single frequency component in x 1 of frequency 0.2 cycles per sample. So, you 

have to be very clear of the units. 

What about the other signal, x 2, which is also of the same frequency, but I generated 

107 samples of it. Now, it says, that apart from, in fact, the first thing that you should 

observe is that it does not even correctly detect the frequency there, which is 0.2. It 

actually shows that there are many frequencies, of course, within the vicinity of 0.2. It 

does not hit 0.2. And, this phenomenon that you see here is called spectral leakage. 



What has occurred here, keeping aside all the map, a simple way of understanding 

spectral leakage is, in the given data record the signal of interest has not completed 

integer number of cycles; it has completed fractional cycles. And therefore, not only you 

do not hit the exact frequency, but this spectrum at the frequency 0.2 is actually, it 

actually spreads around to neighboring frequencies; it leaks and that is called the spectral 

leakage.  

So, this has occurred primarily because the data record does not contain a full integer 

number of cycles of the sine wave. Of course, in practice, what do I do? I do not know 

the frequency, so, how do I collect the record such that integer cycles are record then. In 

fact, if I know the frequency I do not even need to do a Fourier analysis. Well, in practice 

what happens is you will have to use some window functions which I will talk about in 

the case of short time, when we talk about short time Fourier transforms which will 

mitigate the spectral leakage. It will not completely eliminate it.  

However, the good news is that if you collect large samples then does not matter really 

whether the signal has completed fractional cycles or integer cycles because the number 

of full cycles will be so large that the fractional, effect of the fractional cycle will be 

minimal. So, as n becomes larger and larger, and I leave that as an exercise to you; you 

can choose for example, 1007 samples and see how this spectral aspect periodogram 

looks like; you will see that the spectral leakage would come down. So, we will talk 

about spectral leakage more in, more formally when we talk of windows in short time 

fourier transforms. 

Now, let us move on to the noisy versions of the signal. Again, the purpose is to show 

you how, when you apply the concept of periodogram to noisy signals things change; 

whether do they change or not, is what we will see. After this I will take an ideal random 

signal where there is no sine wave and compute the periodogram, and show you what it 

is.  

Let us look at the periodogram of the first noisy signal. Despite the addition of noise I 

am able to detect those 2 frequencies, 0.1 and 0.25. Here there is no spectral leakage 

because both these frequency components have completed integer number of cycles in 

the length of the signal. That is the reason I have chosen these 2 frequencies.  

However, if you look at the periodogram of the second signal where we have added large 

amounts of noise; what we mean by large is the signal to noise ratio is 1 here, and you 



should verify why it is 1. Earlier, the signal to noise ratio was 25. Now, still the 

periodogram is able to detect the frequencies quite vividly, but then there are other 

computing neighbours here which brings, which bring in a lot of ambiguity; you are not 

sure whether these frequency, these peaks here are due to noise or due to the signal itself. 

So, that is the problem of having large amounts of noise. 

Of course, then there are algorithms which detect the levels of noise and then you can 

filter the noise from this data and rerun the periodogram, and so on. But, the purpose of 

this example was to show you that you can still use the periodogram to detect the 

frequencies when the signal to noise ratios are fairly high; ideally, you should not be 

using periodogram if the signal is purely noisy. 
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And, that is the last example that I am going to work for you here. So, let us generate 

here 1000 samples of a random signal, ideal random signal known as the white noise; its 

mean 0, variants 1. And, I am going to compute the fourier transform of this white noise 

realization, 1000 length realization. And, we will create here the corresponding 

frequency vector. So, what we are going to do here now is, we are going to evaluate the 

periodogram of the signal over the first half as we did earlier, and then obtain a stem plot. 

In fact, because you have 1000 observations it may be better to plot the regular plot 

itself. 
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So, look at how it looks like. This is how the periodogram of a white noise looks like. 

Now, how do I know if this is correct or wrong? Well, theory says, that the spectral 

density of a white noise process should be flat; that is it should be a horizontal line 

running across frequencies, running over frequencies. But, what we have here is a very 

erratic display of the spectrum. There is no way I can see straight away that there is the 

underling theoretical one is a flat one. So, this is the problem of using periodogram on a 

purely noisy signal or a signal which has large amounts of noise. 

Of course, there are improvements to this method known as modified periodogram 

methods and so on, for random signals. And, we are not going to discuss this further; just 

to give you a feel of when to use a periodogram and when to use modified versions of it. 

So, I would like quickly go over the documentation on periodogram; I am not going to 

show you how to use it, but I leave that as an excise to you. Verify the results that we 

have obtained manually; that is by manually computing the periodogram with the results 

that you get from the MATLAB routine.  
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So, let us just quickly walk through the documentation on periodogram. In fact, I am not 

sure how well you can actually see here. So, let me actually go through the help in the 

screen here. So, what does the periodogram do? Let me take you to the start of the help 

here; it returns the power spectral density, but it uses the, it returns the power spectral 

density in terms of angular frequency. So, that is the expression that you should be using.  

What we have calculated is power spectral density in terms of cyclic frequency. So, when 

you are comparing, please be careful; compare the right things. And, there is an option 

called window which we have not discussed in detail, but I have mentioned this that 

windows can be used to mitigate the effects of spectral leakage; by default there is no 

windowing that is performed, if you do not specify the window.  

Now, there is a something called here NFFT which is a number of frequencies at which 

you are evaluating. And, you should check what are the default values of the NFFT; each 

is of, each routine uses a different number for this. We have used NFFT equals the 

number of observations itself, but periodogram I used something else. 

And finally, if you go down here, it can also return the power spectral density in terms of 

the cyclic frequency, but then you have to specify the sampling frequency and so on. 

What you could do is you could obtain the periodogram, the power spectral density in 

terms of angular frequencies, simply multiplied by 2 pi that will actually give you the 

periodogram in terms of cyclic frequency.  



And, there is something called a 1 sided spectral density, 2 sided spectral density and a 

centered one. Now, this is the last point that I want to mention. The power spectral 

density is symmetric with respect to frequencies, therefore many a times what is reported 

is a 1 sided one. That is, what is done is, the power spectral density on the negative 

frequency is actually added to the positive one, except at a 0 frequency. And, that is 

called a 1 sided power spectral density; so that the area under 1 sided power spectral 

density still turns out to be the total power. So, the area is preserved.  

Two sided is nothing is done that is the default power spectral density for both negative 

and positive frequencies are returned. And, center is where the p s d itself is written as a 

vector where the center frequency is 0. So, if you look at the vector of p s d as it returns, 

the center value corresponds to 0 frequency. So, these are the 3 different options. You 

should see what is the default option? I believe the default option is the 1 sided power 

spectral density, the periodogram returns. So, you have to be careful. We did not compute 

1 sided power spectral density; we computed 2 sided power spectral density.  

So, if you want to compare the results that we obtained with what periodogram is, then 

you should use NFFT equals number of observations; you should not window and you 

should ask for a 2 sided power spectral density, and you should multiply what you 

obtained with 2 pi. So, these are the 4 different things that you have to do to compare.  

Thank you.  

 


