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Lecture - 3.5 

Properties of Fourier transforms 

 

Hello friends, welcome to lecture 3.5 where we are going to review certain useful 

properties of Fourier transforms. Now, in this I do not mention discrete time or 

continuous time, because the properties that we are going to discuss are equally 

applicable to both domains. But since I use the term Fourier transform, obviously we are 

referring to the class of aperiodic signals. There exists similar properties for the Fourier 

series case, but we are not so particularly interested in them right now. 
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So, the objectives of this module is, I have to discuss the properties of the discrete time 

and continuous time Fourier transforms. And in particular those that are relevant to time 

frequency analysis. I only highlight the utility of these properties. We will actually apply 

them when we study the particular tools, such as short time Fourier transforms, wavelet 

transforms and Wigner Ville distributions. 

Now, just to recap we have in the last 4 modules studied the 4 different types of 

theoretical transforms - the continuous time periodic and aperiodic, and the discrete time 

periodic and aperiodic signals cases, where we have the Fourier series and Fourier 



transform cases. In all this we have really avoided the derivations, and rather stated the 

results; occasionally we have shown the derivation of some results, but by and large, we 

have kept away with derivations. Primarily, because this is a unit where we are reviewing 

the concepts rather than learning them fresh. In fact, these are as I have said earlier also 

prerequisites, but we are just revisiting them in the context of time frequency analysis. 

We will adopt a similar approach here as well. We will learn the properties rather than 

trying to derive them, but a lot of these properties can be actually derived by hand 

without referring to any text. In fact that would be a good exercise for you to go through. 
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So, just a few opening remarks as usual. To recall one of the prime purposes of working 

with transforms is that they provide ease of analysis. So, for example, if you take Fourier 

transforms, very useful in the analysis of linear time invariant systems and signals 

emanating from emerging from these systems. In a number of different ways, of course 

we are not going to really study all the useful applications of these properties, but we will 

restrict ourselves to time frequency analysis. And in particular among the many 

properties, we will focus on the time shift, time reversal, scaling, convolution, and as a 

consequence correlation properties of the Fourier transforms. We will also study the dual 

properties. I am mentioned this earlier. We have seen this in duration and bandwidth as 

well. The time and Fourier frequency domains have a very nice duality, and so do these 

properties as well, as we will shortly go through. 

The main point that I would like to keep you in mind is, these transforms are being 



reviewed with the purpose of analyzing and computing the other transforms that we are 

going to study in this course, including the Wigner Ville distribution. Wigner Ville 

distribution is not ideally a transform, but it can be viewed as a transform with an 

adoptive basis.  
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So, let us start looking at the linearity property which is fairly obvious result to derive. 

So, if I have 2 signals with Fourier transforms, x 1 and x 2, then the Fourier transform of 

sum of these 2 signals, is the respective sum of the Fourier transforms which is a fairly 

easy one to derive. And you should expect this because these are essentially, the Fourier 

transforms are essentially summations, and they are linear combinations. So, this 

property should not be surprising. Of course, this is, this works behind the scenes in all 

the Fourier analysis, and even the analysis of other transforms and so on.  
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So, the first, it is second, but really the first property that we are going to use in the 

analysis of other transforms, is the time shifting property. Now, this time shifting 

property states that if I have a signal whose Fourier transform is, let us say, signal is x 1 

k, and its Fourier transform is x 1 of f, then when the signal is shifted in time by a certain 

among d then the Fourier transform is multiplied with e to the minus j 2 pi f d. This result 

is, as it is stated is given for discrete time signals. But, as I mentioned earlier, it is equally 

applicable to the continuous time case as well.  

So, the way to remember this is the time shift result in frequency domain modulations. 

Now, this is a very useful result in delay estimation widely used in signal processing and 

so on. We shall use this property to study the transforms such as wavelet transforms and 

short time Fourier transforms, particularly the wavelet transforms. For example, if I 

translate the wavelet function, then how does its Fourier transform modify, and so on. 

So, we will learn the particular application of this in the respective time frequency 

analysis tools later on. 

An important point to remember is time shifts do not affect the energy spectrum. This is 

also true for power spectrum as well. So, the energy spectrum of the shifted signal 

remains unchanged; obviously, because if you look at the Fourier transform of the shifted 

signal, the magnitude of the Fourier transform of the shifted signal and the original signal 

are the same, because the magnitude of e to the minus j 2 pi f is the unit, regardless of the 

value of d.  



Therefore, the energy spectrum will remain the same; however, the phase is affected by 

this delay. And it is this property that is used in delay estimation. There are number of 

classical delay estimation methods formulated in the frequency domain based on this 

property. So, you exploit the phase to estimate the delay. In fact the spectrum shifts by 

minus omega d at e frequency or you can say, minus 2 pi f d, the phase shifts by minus 

omega d or minus 2 pi f d at e frequency. 

Now, the duality of this result is that a shift in frequency. So, this is just a reverse case. 

Now, shift in frequency corresponds to modulation in time, that is the nice duality that 

this properties share. Now, once again I leave this to you to prove this relation; that is 

fairly straight forward. So, you start with the definition of Fourier transform, and then 

evaluate the Fourier transform of the shifted signal, and make some necessary 

adjustments; in about 1 or 2 steps you should be able to derive the final result. This is 

some, so both these properties are going to be useful to us later on. 
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The next property of interest is the time reversal. By time reversal we mean reflection in 

time. So, if I have a signal whose Fourier transform is x of f, then the Fourier transform 

of the reflected one is the complex conjugate of the Fourier transform of the original 

signal. So, reflection results in a complex conjugate behavior. Remember, complex 

conjugate is obtained by replacing j, the imaginary part of the number with its negative. 

So, you are really transferring the negative sign in time to the imaginary portion. 



And the duality also, is also contained in the statement. So, if I am asking, if I reflecting 

frequency, what is the consequence in time? The consequence in time is that I am 

reflecting in time, right. So, that is because if I reflect the frequency it is equal to taking 

the complex conjugate. So, the dual is contained in this statement. So, this is useful later 

on in writing an expression for the computation of wavelet transform. In fact all wavelet 

transforms are actually rewritten in frequency domain using this property, and another 

property as well. 
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Now, coming to one of the most interesting properties to us, particularly in the context of 

wavelet transforms, is the scaling property. This is a property that needs to be understood 

well. So, we shall spend a few more minutes than we spent on the other couple of 

properties. So, what this result says is if I have a signal whose Fourier transform is x of f, 

then the Fourier transform of the scaled signal; what we mean by scaling is if I have x of 

k then the scale version is x of k by s, as we can see here. Then the Fourier transform of 

this scale signal is x of s f. 

It is a fairly easy result to prove. Again I am avoiding the derivation here, but the simple, 

the starting point is the expression for the Fourier transform. So, what you want do to is 

you want to evaluate the Fourier transform of the scale signal, write the expression for 

the scale signal, and then you should be able to make a change of variable, just one 

change of variable will get you this result. So, such a fairly straight forward result to 

prove.  



Rather than worrying ourselves about the proof at this moment we shall ask what is a 

consequence of this property in time frequency analysis and in filtering and so on? So, if 

x of capital F, so now I am referring to a continuous time signal here. If the Fourier 

transform of a continuous time signal has as a center frequency f c, then scaling the 

signal that is a continuous time signal by a factor 1 over s results in shifting the center 

frequency to f c over s. So, let me explain this to you briefly on the board, and there is 

also an illustration of this point in the next slide.  
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So, what this result says is, if a signal has the Fourier transform x (f), then x (t) over s 

match to x (s times f) in the Fourier domain, alright; where s is the scaling parameter. 

Now, the statement there says, if x (f) has a center frequency f c, what do we mean by 

center frequency? For no,. imagine that x (f) is a real valued quantity; if it is not, then 

you take the magnitude. When is x (f) real valued? When x (t) is complex, right. You can 

have complex functions; for example, when you are dealing with complex wavelet such 

as Morlet wavelet, then this function here or signal here, is a complex one. If it is 

symmetric, then you should get a real value Fourier transform.  

Either way, whether it is complex or real I can look at the magnitude. And let us say that 

the magnitude of x (f) has this kind of a shape, just for the sake of f. So, here I have the 

center frequency f c; this is what we mean by center frequency. We can think of x (t) or 

even x (k) as the impulse response of band pass filter. Later on we will make this 

observation.  



So, scaling this signal by a factor of 1 over s results in x, the Fourier transform in x of s 

of s times f. Obviously, now what happen is, that the center frequency of this here, of this 

x (x f), I were to plot, then now this, what I would see is a scaling of, the shift of this 

center frequency by a factor of 1 over s. Now, to understand this I have the illustration 

later on. Whether it shifts to the right or to the left, depends on the value of s.  

If s is greater than 1, then the center frequency shifts to the left because f c over s is 

going to be less than f c. If s is less than, so this is center frequency shifts to the left, and 

that is the reason I have not drawn it here, how it looks like. And then when s is less than 

1, the same thing here shifts to the right. Now, this left and right are with respect to the f 

c, that is the center frequency of the original signal, alright. I have not drawn this, but I 

have drawn this for you in the slide. This is the basic point that I am trying to make there.  

Now, before we go to the next slide, it is important to understand what is the 

consequence of scaling this signal? That is, how does the signal look like when I scale it? 

So, to understand this, let us take the simplest functions. Although I am not going to use 

this; in the next level I am going to use different function. But, to understand the 

consequence of scaling, let us say that the signal of interest has the shape like that of a 

Haar wavelet. And let us say, this is 0, half, 1.  

We will not particularly worried about the magnitude, but we can say here this is 1 and 

minus 1, just for the purpose of the discussion, that is really irrelevant. Now, when I look 

at x of t over s, suppose s is 2, alright, suppose s is 2, then what happens is I have a 

dilated signal which means I am really taking the signal and stretching it like I stretch an 

elastic band. Why does it get stretched? To see why it get stretched, define this x of t of s 

as some x bar of t, just to understand what is happening. So, this is a new signal, x bar of 

t. We have just introduced a notation which is related to this x of t through this relation x 

of t over s.  

So, let us say I am asking what is the value of x at 1, at time 1, x bar at time 1, t equals 1? 

Now, because s is 2, I am going to replace s with 2 here, as a consequence I have x bar of 

1 as x of half; which means what is happening here? The value at half, so if I were to 

draw the x bond as a function of time t, what happens is, the value at 1 for x bar is 

actually the value at half, alright. 

 So, let me actually draw a longer time axis because it is going to be a dilated signal. So, 

here I have 0, half, 1 and 1.5 and 2. So, the value of 1 for x bar is a value of x at half 



which is actually 0. And the value at 2, likewise is going to be, of x bar at 2 is going to be 

the value of x at time 1. So, which means, at this point I am going to have this here. I am 

just showing you the cross over points here and symbolically it will utilize. So, you can 

see clearly that I have an elongated or a dilated signal. 

And now, I leave it as a simple exercise to you, to see that values of s less than 1 will 

result in compression, we really compressing the signal. Obviously, what is happening is 

that the area under this is going to be more than the area under this. So, one needs some 

kind of normalization and so on. We will talk about this when we discuss wavelets. So, 

the point to remember is when I scale a signal this way, and values of s greater than 1, 

will result in dilation or elongation. And values of s less than 1, is going to result in 

compression. 

And in frequency domain, the same story is happening, why? Because, there is one more 

thing that I will show you; we have discussed here that the center frequency shifts to the 

left for values s greater than 1. So, what is happening here is, the moment I elongate this, 

think of very high values of s, then what would happen is, this becomes a really 

elongated pulse. So, it has much more lower frequency content than this one. So, this is 

changing fast, this is changing slowly.  

Whichever changes slowly, we say it has low frequency; whichever changes fast has 

relatively high frequency. It is all relative to this original signal, nothing is obsolete here, 

right. So, that is why now the center frequency shifting to the left; predominantly, this is 

a low frequency signal relative to this signal here, and that is why I have a center 

frequency shifting to the left when s is greater than 1. So, this is the new, this is f c 

prime; this is the center frequency of the scale signal. 

Also, you should observe that I have the spread of this scale, of the Fourier transform of 

the scale signal narrower than the one that I have for the original signal. Now, this is 

again a consequence of the duration bandwidth principle, right. What is happening here? 

When I am elongating the signal, I am extending the duration of the signal, as a 

consequence I would be really narrowing the bandwidth, alright.  

So, what is the scaling factor here? The duration is being modified by this factor s, right. 

So, the duration is actually increasing. So, if sigma t is the duration of x of t, then x of t 

of s has a duration of s times sigma t. And the bandwidth here, if suppose x of f has a 

bandwidth which is a measure of the spread of this; it is not this exactly, but it is the 



measure of the spread, then the bandwidth of this is going to be sigma b over s. 

The product of these 2 is still sigma t time sigma b; that is the beauty of this scaling. So, 

now, again you can see, when s is greater than 1 I have a longer duration signal, but that 

results in a narrower bandwidth; and when s is less than 1 I have a shorter duration 

because I am going to compress this, but then at the cost of increased bandwidth. So, 

hopefully, this gives you an idea of what we are going to see in wavelet transforms. 
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So, let us see this with an illustration on the Morlet wave. I have shown you this slide in 

lecture 1.2 when we were giving a, going through an overview of wavelets. So, what I 

have on the top is a real portion of the complex Morlet wave. I could plot the imaginary 

one as well. And what I have on the right is mod x of f square, it reads power. So, it still, 

curvature of this is the same as modulus of x (f). So, this is now the situation that I have 

for x (t); this is x (t), this is real part of x (t), and I have here mod x (f). 

When I scale it by a factor of 0.5, as I mentioned earlier, I have compression here. But 

then what do I have? I have the center frequency shifting to the right. So, what is 

happening here? Relative to the original filter or the original energy spectral density that 

I have, this now has the filtering characteristics in the higher frequency region because 

the center frequency has shifted to the right, but the spread has increased. And when I 

scale it by a factor of 2 which is greater than 1, then I have a dilated wave or wavelet, 

because now this is the mother wave and these 2 are the wavelets, I have the dilated 



wavelet.  

Now, the center frequency has shifted to left, and the spread has also decreased, because 

of the reasons that I have explained, alright. So, this is something that should be 

understood. There can be some confusion initially in understanding this, but again going 

through the exercise repeatedly, doing this by yourself will help a lot. And this is very 

important to understand how wavelet transforms really work. If you have understood 

this, you are kind of understood 50 percent of how wavelet transforms work, right, what 

is the basic idea. 
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So, one of the penultimate properties that we are interested in is a convolution theorem 

which is a very famous and celebrated result in linear systems analysis. Convolution in 

time domain transforms into a product in the frequency domain. So, if I have 2 signals 

and I am looking at a third signal which is a convolution of these 2 signals, then the 

Fourier transform of the convolution of this is a product of the Fourier, respective Fourier 

transform.  

So, it is a beautiful result because it paves way for a number of things for a frequency 

domain analysis of linear time invariant systems for computation of convolution itself 

because there exists efficient algorithms for computation of Fourier transforms by a way 

of ffts, fast Fourier transforms. I can first compute the, in order to compute the 

convolution, this convolution here, I can first compute the respective Fourier transforms, 



multiply them and then take the inverse Fourier transform, I will recover the problem. 

So, that is the beauty of this result, but that is in the computation side. In the theoretical 

side, this leads to the analysis of linear time invariant systems in frequency domain, we 

have what are known as frequency response functions and so on. 

We had preliminary discussion of this in the when we were discussing the discrete time 

Fourier transforms and so on. As for as time frequency analysis is concerned, this is very 

useful in the computation of continuous wavelet transform. We can write the continuous 

wavelet transform as a convolution and then evaluate the continuous wavelet transform 

in the frequency domain.  

At this moment it may sound strange because wavelet transforms help you do a time 

frequency analysis, but then we are saying we shift to the Fourier domain and come 

back, but they are all interrelated, alright. So, we will see later on how this is used in the 

computation of CWT, the details of them.  
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Now, the duality of this convolution result is a product. When I have a product of the 

signals, and I am looking at the Fourier transform of that signal, then in the frequency 

domain, I have the convolution of the respective signals, right. Now, how is this useful? 

Well, product is a relatively easy thing to evaluate. So, we are not really going to use in 

computation. But, we are going to use this result in studying Fourier transforms of 

windowed signal. What we mean by windowed is, segmenting, as we do in short time 



Fourier transforms and so on. 

Windowing not only occurs in short time Fourier transform but also in the regular 

Fourier transforms of finite length signals. All the Fourier transforms that we apply in 

practice are for finite, to finite length signals. And you can always view the finite length 

signal as a segmented version of the infinitely long signal that we are unable to obtain 

observe.  

Therefore, this result is useful in asking what happens to the true Fourier transforms that 

is that of the infinitely long signal, when I take only a part of it which is what I can do in 

practice, and evaluate the Fourier transforms.  

So, how does the Fourier transform of the observed signal or observed series relay to the 

Fourier transform of the theoretical one, is the question, and that is nicely answered by 

this. And this is called windowing, and they can show this result in spectral leakage and 

so on. We shall talk about this in the next module when we talk of discrete Fourier 

transform. It is also useful, therefore, in understanding how short time Fourier transform 

works.  
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So, finally, we have the correlation theorem, we say it also the Wiener Khinchin theorem 

version for deterministic signals. Although, Wiener and Khinchin gave the result for the 

stochastic signals, just slide adaptation of those terminologies here. So, the Fourier 

transform of the cross covariance function is the cross energy spectral density. We have 



seen this in the context of discrete time Fourier transform earlier, and also in the case of 

discrete time Fourier series.  

So, the expression here says, that the Fourier transform, discrete time Fourier transform 

of the cross covariance function gives me the energy spectral density. Again, I have given 

you relations both in terms of cyclic and angular frequency. The figure on the right 

essentially tells you now 3 different ways of computing the energy spectral density. We 

have discussed this earlier as well; how this theorem or this result gives me a way of 

computing the energy spectral density.  

So, one way is a classic way, I take the Fourier transform, take the magnitude square; the 

other way is through the Wiener Khinchin theorem. Now, the way to prove this result is 

to actually take the, to express the auto covariance function or the cross covariance 

function as a convolution between the signal and the reflected version of itself, if you are 

looking at the auto covariance function; or, the reflected version of the other signal if you 

are looking at the cross covariance function.  

That is why I have a convolution of x 1, and the reflected version of the other signal. So, 

that is of the signal itself. Then, I have the auto cross covariance function, and I take the 

Fourier transform, I can get the energy spectral density.  

The third rule is to compute what is known as the discrete Fourier transform which I will 

discuss in the next module, and compute the magnitude square. The discrete Fourier 

transform is concerned with the Fourier transform of a finite length signal. Now, when I 

increase this number of observations to infinity, then I can also recover the energy 

spectral density.  

So, these are 3 different ways of computing the energy density. In time frequency 

analysis, this result is very useful in understanding the Wigner Ville distribution. So, with 

this we come to a close of this module on the properties of Fourier transforms. As I have 

mentioned earlier on, although we have stated the results for discrete time signals 

aperiodic signals, these are also useful for continuous time aperiodic signals as well.  
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And I suggest that you derive some of these properties by yourself. They are fairly easy 

to derive by hand without actually referring to a text. Of course, our teaching assistants 

and myself, we are always available to help you with the derivations or the answering 

your question on the forum. Good luck and see you in the next module.  

Thanks.  


