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Lecture - 3.4 

Discrete-Time Fourier Transforms 

 

Welcome to lecture 3.4 of the course on time-frequency analysis and wavelet transforms. 

In this module, we are going to learn concepts pertaining to discrete-time Fourier 

transforms. Again as with the previous versions of the Fourier transform, it is largely a 

review, but mostly the interpretations will matter rather than derivations. 

(Refer Slide Time: 00:41) 

 

So, in the lecture 3.3, we have discussed discrete-time Fourier series. Now, we move on 

to discrete-time aperiodic signals like we did in lecture 3.2 for the continuous-time case. 

As expected we have the discrete-time Fourier transform. And again like the continuous-

time case, we have the energy spectral density for discrete-time aperiodic signals. We 

shall also look at the concept of cross-energy spectral density towards the end. 
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Now, a few opening remarks similar to what we had discussed in lecture 3.3 in the case 

of discrete-time periodic signals; again the story is more or less similar; the synthesis 

equation is now an integral like we had in the continuous-time case; but still restricted to 

this fundamental frequency range, because we are still working with discrete-time 

sinusoids. The only difference is in the case of periodic signals, we had used harmonics; 

and now we are going to use the entire set of frequencies, the entire continuum of 

frequencies in this fundamental interval. Consequently, the frequency axis is a 

continuum. And once again the discrete-time Fourier transform can be derived starting 

from the Fourier series equation for the periodic signal by letting the period go to 

infinity. 
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So, recap and a comparison with the discrete-time Fourier series case; this is pretty much 

similar to what we saw for the continuous-time case. The periodic signal had a 

summation in the synthesis equation; whereas, now we have an integral in the aperiodic 

case. And just to reiterate, the integral is now limited to minus half to half; that is 

because of the behavior of the discrete-time complex exponentials. And as far as the 

analysis equation is concerned, in place of the Fourier coefficients, we have now the 

discrete-time Fourier transform – exactly like what we had in the continuous-time case. 

And once again the summation now runs from k equals minus infinity to infinity; which 

means we are looking at the entire existence of the signal in contrast to the periodic 

interval that we considered – the duration that we considered for the discrete-time 

Fourier series case. 

And moving on to the Parseval’s relations, we have the energy spectral decomposition as 

expected. The area under magnitude square of X of f gives me the total energy or the 

energy of the signal. And therefore, modulus X of f square acquires the interpretation of 

an energy spectral density. As far as the condition for the existence of the discrete-time 

Fourier transform is concerned, the discrete-time signal of course decides being 

aperiodic should have finite 1-norm, which is a stricter requirement compared to the 

finite energy, which is a weaker requirement. And these are again similar to what we 

have discussed in the other three variances. 
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So, now, looking at the synthesis and the analysis equations in detail, we have the 

expression for the synthesis equation here. I have given you both versions in terms of the 

angular frequency as well as in terms of the cyclic frequency. Note this factor 1 over 2 pi 

that appears in front of the integral when you use angular frequencies; that is fairly 

straightforward to see, because f is omega over 2 pi. So, in moving from this integral to 

the angular frequency integral, you have to accommodate this 1 over 2 pi. And the 

discrete-time Fourier transform equation is the same whether you evaluate in terms of the 

cyclic frequency or the angular frequency. But, there are a few interesting remarks that I 

would like to make here. First of all, the discrete-time Fourier transform as we had 

mentioned earlier is unique only in the interval 0, 1 in terms of cyclic frequency or minus 

0.5 to 0.5. Or in terms of angular frequency 0 to 2 pi. 

Very important ((Refer Time: 05:20)). This is quite important to note, because when we 

move to discrete-Fourier transform, we will make a dual observation of this remark; 

which is that, the discrete-time Fourier transform is periodic as you can see from the 

equation 2 here. And we say now that, sampling in time introduces periodicity in 

frequency. This is a very important observation, because when we move to discrete-

Fourier transforms, we would be sampling the frequency domain and there we will 

observe that, sampling in frequency introduces periodicity in time domains. So, the time 

and frequency domains are very close duals of each other. When we discuss the 

properties of Fourier transform in the next module, we will also observe this strong 



duality between the time and the Fourier frequency domain. So, this is something to 

remember. 

And finally, the discrete-time Fourier transform is also the z transform of this discrete-

time signal evaluated on the unit circle. On the z-transform is a generalized version of 

the Fourier transform; where, z is a complex number unlike the pure imaginary number 

that, it becomes when you evaluate it on the unit circle. So, the z transforms of signal can 

accommodate a larger class of signals – even those signals that Fourier transforms cannot 

accommodate. For example, they can accommodate even signals that do not have a finite 

1-norm. So, that is the beauty of using the z transform. So, we have used extensively in 

the analysis of linear-time invariance systems and so on. But we will not use z transforms 

here. 
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Existence conditions – I have already remarked the discrete-time signal should be 

absolutely convergent; that means it should have a finite 1-norm and a weaker 

requirement that, the signal should have a finite 2-norm; which means finite energy. 

Now, what this means is that, signals that exists forever in time and are aperiodic such as 

step and ramp and so on. And they do not have a Fourier transform; whereas, all finite 

length bounded amplitude signals will have a Fourier transform. And this was also the 

case with the continuous-time signal. 
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As expected now and as also discussed earlier, now, we have this energy spectral density, 

which is a very practically useful measure. The area under magnitude square of X of f 

gives me the energy due to Parseval’s relation. And again, notice that, I have given 

expressions in terms of cyclic as well as angular frequency. And the moment you use an 

angular frequency here – the angular frequency, you have 1 over 2 pi appearing in front 

of the integral. Ignoring this 1 over 2 pi would give you wrong value of the spectral 

density – the energy spectral density. So, as we have argued before with other – with the 

continuous-time case, the mod X of f square or mod X of omega square by 2 pi gives me 

the energy spectral density of the signal or the energy density in the frequency domain. 

Now, given that, X of f is periodic as we have noticed earlier for real-valued signals, the 

spectral density is also periodic. Remember we are going to evaluate the spectral density 

only in the fundamental frequency range; it does not mean the spectral density does not 

exists outside this interval; it is just that it is periodic. So, there is no need to plot it; but if 

you want to plot this spectral density for the entire frequency axis, you plot over the 

fundamental frequency range and repeat it; that is the main idea or the main consequence 

of this observation that the spectral density of a discrete-time signal is periodic. That is 

the fundamental difference between the continuous-time aperiodic case and the discrete-

time aperiodic case when it comes to spectral density. There the spectral densities are not 

periodic. 
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So, let us walk through a couple of examples to understand how this discrete-time 

Fourier transform works and get a better feel of it. So, here we take a very simple 

example which is a discrete-time impulse; which is also known as a Kronecker delta. 

Now, unlike the continuous-time impulse, this Kronecker delta is physically realizable. 

And just plugging in this expression for the signal into the Fourier transform expression 

clearly brings me this very interesting result that, the Fourier transform is unity – 

assuming unit impulse at all frequencies. What this tells me is that, when I have a signal 

that is highly localized in time; now, we are showing you the signals – the signal here on 

the left and the energy spectral density on the right. The signal plot is also the same as 

the energy spectral density plot in time. 

Again, the same observation that we made yesterday – when we have a highly localized 

energy density in time or very finely localized, we have a very broad spread of the 

energy density in frequency domain; in fact, it spans all the frequencies uniformly; this is 

again a consequence of the duration bandwidth principle that we have seen. So, the 

duration here is the ideal, that is, zero-duration you can say, so just one sample. And the 

bandwidth here is the complete fundamental frequency interval. Of course, we are 

talking of duration and bandwidth in a very qualitative sense; but as I explained in the 

previous lecture – the lecture 3.2, the duration and bandwidth are actually the central 

moments of the energy densities in time and frequency respectively. So, this is something 



that we should repeatedly observe, so as to reinforce a concept of duration bandwidth 

principle in our minds. 
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Now, when we evaluate the discrete-time Fourier transform of a finite-duration pulse, we 

have this expression here. Again this is fairly easy to derive; just walk through the math 

and you will get this answer. And the expression for the energy spectral density is given 

by evaluating the squared magnitude of X of f. L is the duration of the pulse that we are 

talking about. 

(Refer Slide Time: 12:04) 

 



To give you an idea of how things look like, I have evaluated this for L equals 10 and A 

equals 1, that is amplitude being 1. Once again you see the same story that we had seen 

earlier. Now, the signal has a larger duration than the case of the impulse. The duration 

definitely is finite unlike the case of the impulse. Naturally, now, what has happened is 

the bandwidth or the spread of the energy spectral density has shrunk from being full 

from uniform – from being a very large value for the impulse case. In fact, here the 

energy density spread over all frequencies; whereas for the pulse case, the energy density 

– spectral density is localized over this interval. So, there is significant energy here in 

this range, but insignificant once outside this interval. So, the bandwidth is definitely 

smaller than the case of impulse. Again I mean the same story – the duration bandwidth 

principle is playing the game here. 
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So, when we talked about the discrete-time periodic signal, we noticed these connections 

between energy spectral density and auto-covariance function. We have a similar result 

here; the energy spectral density of a discrete-time periodic signal and its auto-

covariance function form of Fourier pair as given by equations 8a and 8b here. I have 

this energy spectral density as a Fourier transform of the auto-covariance function. And 

likewise, the auto-covariance function being the inverse transform – an inverse Fourier 

transform of the energy spectral density. Notice the limits here; the limits for the auto-

covariance function run from minus infinity to infinity; whereas, the limits for frequency 

run from minus half to half. If you were to use this spectral density in terms of angular 



frequency, then you necessarily need to have a 1 over 2 pi in front of this integral to get 

the correct values of the auto-covariance function. Now, in order to prove this, you need 

to use this definition that we had given in lecture 2.1 for the auto-covariance function of 

a discrete-time finite energy aperiodic signal. 

Now, it turns out that, you can also derive this result using the properties of discrete-time 

Fourier transform, which we will discuss in the next module. Again, all of these lead to 

what is known as the Wiener-Khinchin theorem as I had mentioned in the previous 

lecture, which is extensively used in computing and defining the spectral density of 

random signals. 
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Now, it is useful to know the concept of cross-energy spectral density. The cross-energy 

spectral density essentially is an extension of the auto-energy spectral density, that is, a 

regular energy spectral density that we have been looking at for a single signal. Now, we 

are looking at two signals. We would like to measure the linear dependence between two 

signals in frequency domain. Remember – we said the cross-covariance function is 

actually a measure of the linear dependence between two signals that are shifted in time 

by lag L. In fact, similar to the relation that we have here, that is, the auto-covariance 

function and the auto-energy spectral density being the Fourier pair; here we have the 

cross-energy spectral density and the cross-covariance function also forming a Fourier 

pair although I do not sight that in this slide here 



The most important point to keep in mind is that, the cross-spectral density or the cross-

energy spectral density measures the linear relationship between two signals in the 

frequency domain. You can also define what is known as a cross-power spectral density. 

Again, you will find a similar relation between the cross-power spectral density and the 

cross-covariance function for periodic signals. Why is this result useful and where is it 

used? It is used extensively in the analysis of linear-time invariant systems. If you think 

of x 2 being the output and x 1 being the input to a linear-time invariant system; then we 

know from linear systems theory that, the output and input of the discrete-time linear 

invariant system are related through this familiar discrete-time convolution equation; the 

star here denotes convolution. And one can start from this convolution equation and use 

the properties of discrete-time Fourier transform to derive these two central results in the 

analysis of LTI systems in the frequency domain. The first one is relating the cross 

spectral – it is expressing the cross-spectral density in terms of the auto-spectral density 

of the input. So, here this is the cross-spectral density between the output and input. And 

that is related through what is known as the frequency response function. So, this big G 

of e to the minus j2pif is nothing but the discrete-time Fourier transform of the impulse 

response coefficients that we have; which are denoted by the small g. 

And here we have the expression for the output spectral density in terms of the input 

energy spectral density. But, now, again the frequency response function comes into 

picture, but the magnitude square now plays a role. So, you can see from these two 

results that, the cross-energy spectral density is a complex valued quantity unlike the 

auto-energy spectral density. And that is to be expected, because the cross-energy 

spectral density is the Fourier transform of the cross-covariance function. And because 

the cross-covariance function is in general asymmetry, you would obtain a complex 

valued number.  

Whereas the auto-covariance function is a symmetric function; you are guaranteed that, 

the auto-energy spectral density is going to be real valued quantity. Of course, we are 

talking of real-valued signals. Therefore, this cross-energy spectral density has a 

magnitude and phase; and the phase of the cross-spectral densities are used in delay 

estimation and so on; just like we said cross-covariance functions can be used in delay 

estimation. These frequency domain results are very useful in for example, quantifying 

linearity, testing linearity in time-invariant systems; defining what is known as 



coherency; which tells me at each frequency, what is the extent of linear relationship 

between the input and output of a system and so on. 

And of course, an important application of these results is in the computation of the 

frequency response functions in system identification; where, I am given input-output 

data; and therefore, I can compute the left-hand side – the cross spectral density and this 

second factor on the right-hand side; knowing these two, I can obtain an estimate of the 

frequency response function. This is called the spectral analysis method of estimating the 

frequency response function. Whereas, the second equation here is used in estimating 

power spectral densities of outputs given the system impulse response description or the 

frequency response description, and the input sequence. So, there are several applications 

of this result. 
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So, just to summarize now, all the four different transforms that we have looked at; the 

first observation is the continuous-time signals have aperiodic spectra as I had mentioned 

earlier on in this module. Whereas, discrete-time signals have periodic spectra; 

regardless of whether this discrete-time signal is periodic or aperiodic, they have periodic 

spectra. And likewise, for the continuous-time case, regardless of whether this 

continuous-time signal is periodic or not, the spectrum is aperiodic. And periodic signals 

have discrete power spectra. So, these are very nice results to remember. What we are 

saying here is regardless of whether the signal is discrete or continuous in time, periodic 



signals will always have line spectra. So, there is no notion of spectral density. Whereas, 

aperiodic finite energy signals have continuous energy spectra again regardless of 

whether this is continuous-time or discrete-time. And therefore, I can define a spectral 

density. So, as I mentioned here, continuous spectra are qualified by a spectral density 

function. 

Now, finally we should also know that, in all cases, you can always think of a spectral 

distribution function like the probability distribution function or the mass distribution 

function in mechanics. For periodic signals, this spectral distribution has a step-like 

shape. Essentially, the spectral distribution function is going to give me the amount of 

power contained in all the frequencies from minus infinity up to that frequency. So, let 

me just explain that to you. 
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So, let us consider the case of aperiodic signals; in which case, I have gamma as a 

continuous function; I have dropped the subscripts here. Then, it is the area under the 

energy spectral density up to the frequency f. So, this is the case of discrete-time 

aperiodic signal that have finite energy. And likewise, for the continuous-time aperiodic 

case, I have gamma in terms of the big F. Once again, the interpretation is the same. 

Now, when I look at the continuous-time or discrete-time periodic; let us take the 

discrete time periodic case; I have gamma now – a function of the n-th harmonic. So, I 

have here the n prime running from 0 to the n-th frequency; here I have P of n prime. So, 



I am going to add up the power spectral density cumulatively up to the n-th frequency. 

And likewise, one can derive here the expression for the continuous-time periodic case 

as well. The only difference being here – now, that n prime runs from minus infinity to n; 

once again I have P of n prime. So, what I meant by saying that, the spectral distribution 

function having a step-like behavior for the periodic case is you can recall that, these 

power spectra – now, these are power-spectral distribution function; these are energy-

spectral distribution functions. The power-spectral distribution now will have a step-like 

behavior, because each of this here is only defined at those respective n prime. So, if I 

only show you for the discrete-time periodic case, it should suffice. And I plot from n 

equals 0 up to N minus 1 by N. So, this is n on the x-axis. 

Assume that, the signal has no power at zero frequency; which means its DC component 

is 0; then this is n equal to 1. At this point, I have a jump and I have 2 here and so on. So, 

the jumps of course, need not be identical at every n and so on. Depending on the nature 

of the frequency distribution, this magnitude will change; but overall, you will see a step-

like shape for the spectral distribution; and it saturates here. So, the value here at n 

equals big N minus 1 by big N is nothing but the total power in the signal.  

Now, if I normalize the discrete-time periodic signal to have unit power, then the value at 

this n will reach a value of unity when we say that, signal has been already normalized. 

And this is called the normalized spectral distribution. So, that hopefully explains to you 

how the spectral distributions look like for the aperiodic case, where I have energy 

spectral distributions; and for the periodic case, I have the power-spectral distribution. 

Regardless of whether the signal is periodic or aperiodic, I can always define a spectral 

distribution; but I can only define a spectral density for aperiodic finite energy signals. 

So, with this, we come to a close of this module. What we are going to learn in the next 

module is the properties of discrete-time Fourier transform. We are not going to discuss 

all the properties; we are going to discuss those that are relevant to us in the context of 

time-frequency analysis and also look at the discrete Fourier transform in the subsequent 

modules. So, thank you and hope you have a enjoyable session.  

Thanks. 


