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Lecture - 3.3 

 Discrete time Fourier series 

 

Welcome to lecture 3.3 of the course on time frequency analysis and wavelet transforms. 

In this module, we are going to learn particularly the discrete time Fourier series. In the 

previous 2 modules of this unit we have looked at continuous time periodic and aperiodic 

signals. Now, it is time to move onto the discrete time case so, we are slowly tending to 

practicality, because in practice we are going to deal with sample data. 
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So, the discrete time Fourier series is concerned, discrete time periodic signals as you 

must have guessed, because we had continuous time Fourier series for continuous time 

periodic signals. And naturally now, we are going to talk of power spectrum, because 

recall the analogy or the for the continuous time case. So, the energy spectral density 

vanishes that we had in lecture 3.2. And now, power spectrum comes back and we will 

also study a connection between the power spectrum and the auto covariance functions 

slowly leads us to the properties for the Fourier transforms that will study in the next 

module. 
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Before we go further, it is very important to understand the consequences of moving 

from the continuous time case to the discrete time case. And for this recall the concepts 

that we learned earlier in unit 2 where, we talked about the case of discrete time signals. 

And we particularly noted that discrete time sinusoids are unique only in fundamental 

interval which is of width one in cyclic frequency.  

This interval could be minus 0.5, 0.5 or 1 0 or if you look at angular frequency it is 

actually minus pi to pi. And now, the consequence of this property of discrete time 

sinusoid why are we talking about sinusoid? Because see basis functions are the building 

blocks in a Fourier analysis or complex sin waves. In the continuous time periodic case, 

we considered complex sin waves of all frequencies. Now, there is no point in 

considering complex sinusoid of well, when we say all frequencies, harmonics, but from 

minus infinity to infinity. Now, the idea in discrete time Fourier serious is going to be the 

same and I am going to the express the discrete time periodic signal as a weighted 

combination of discrete time complex exponentials. But with a prime difference being 

that now I am not going to consider harmonics from minus infinity to infinity. 

But I have to, I will restrict myself to this fundamental interval, because outside this 

interval the basis functions will have eliasis in the fundamental ((refer time 02:58)). So, 

there is no point in really including them or we can say that they have been already 

included either way of looking you can look at it. And of course, something to recall that 



the period of discrete time signal can only be expressed in samples and rather than in 

time units. Now, the this is the point that I just mentioned the discrete time signal of 

fundamental period N can consist of how many frequency components? N frequency 

components, what are those frequencies? Now, these are 1 over N, 2 over N up to N 

minus 1 over N besides the usual dc component that we have. Notice that we now, switch 

to lower case for the frequency lower case notation, because now we are dealing with 

discrete time signals. So, the main message is the Fourier representation of the discrete 

time periodic signals will not include infinite harmonics, but only a finite number of 

harmonics, that makes life easier of course, in many ways. And as I mentioned earlier on 

we are dealing with periodic signals. So, we are going to be going to talk about power 

and power spectrum, but not power spectral density, because I am only looking at a 

discrete set of frequencies. 
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So, just to now, put things in perspective I have the discrete time fourier series this top 

row which is the focus of the discussion this module. Here, you have the synthesis 

equations as I mentioned earlier you have a finite summation unlike what we had in the 

continuous time Fourier series case. The index that keeps track of frequencies this is a 

small N which runs from 0 to capital N minus 1.  

As the index run from 0 to N minus 1, I am actually spanning the entire fundamental 

frequency range from minus 0.5 to 5.5 or 0 to 1, whichever way you look at it in cyclic 



frequency. And this is the usual Fourier analysis equations or the expressions for the 

Fourier coefficient. And on the right hand side you have the power spectral 

decomposition result, once again due Parseval’s which tells me how the power is being 

decomposed in the frequency domain. And once again I have mod c N square 

representing the, quantifying the contribution of the nth harmonic which is the discrete 

time exponential to the overall power of the signal. Of course, the bottom row has the 

discrete time Fourier transform which is a subject of discussion in the next module. 
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So, we already have had introduction on why we had the summation running only from 

the fine over the finite length of N and so on. So, let us look at this Fourier analysis 

equation and synthesis equation bit more in detail. First point again to reiterate, the 

family of basis functions that I am going to consider is now, finite this is the family of 

basics functions e to the j 2 pi k N over N. This big N now is a period it is not the number 

of samples that you have and so on. And here N that is you should not read k here 

actually N runs from 0 to N minus 1 and the fourier series of course, is express this way 

while the fourier (refer time: 06:20) are given by this expression as you have seen in the 

table earlier. 

One thing that you can notice is the similarity between the expression for the synthesis 

and analysis equations. They look very allied except for the dummy indices being 

different and 2 other differences you have, a factor of 1 over N in front of the summation 



for C n. And the second difference being e to the j is being replaced by it is complex 

conjugate. So, that gives me nice advantage when I am computing the Fourier 

coefficients or recovering the signal. I need to just write one piece of code all I have to 

do is have this factor 1 over N are in many situations and just switch the sign of j. In 

many text book you will see in place of 1 over N; you would have 1 over root N in the 

Fourier series expansion and 1 over root N here. So that the similarity is much more 

strong on a lighter note, it helps us in memorizing the analysis and synthesis equations in 

a easy manner. 
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So, moving on to the power spectrum the power spectral decomposition we have already 

seen this result in the table that I showed you earlier. The main messages here is that mod 

C n square quantify the contribution of the nth harmonic to the overall power of the 

signal and N again runs from 0 to capital N minus 1. And the difference again between 

the results in the continuous time and discrete time case is only in the restriction in the 

number of frequencies otherwise all the interpretations carry forward. So, this is not 

much to discuss as far as interpretation of C n is concern. Now, a few interesting 

properties on this Fourier coefficients t firstly, the Fourier co-efficient enjoy the 

conjugate symmetry property that is, C subscript n is c star the complex conjugate of 

subscript big N minus small n minus. 
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And this is true only when you are looking at indices apart from 0 and N by 2 assuming 

N is even. And very importantly the Fourier coefficients are periodic with the same 

period as the signal, which means the power spectrum in fact, repeats itself that again is a 

consequence of this eliasing property of the discrete time exponentials. So, the power 

spectrum also enjoys the same periodic property as C signal. 
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So, let us work through an example to understand the workings of the discrete time 

Fourier series I just taken a periodic signal and I am giving you the values of this 



periodic signal over a single period. As you can see the period is 4 and all I do is to 

compute the fourier coefficients I ignore the expression that I have seen earlier plugging 

the values of x of k and work through the math it gives me this expression. And if I 

evaluate the coefficients at all values of n small n 0 1 2 and 3 then I obtain c 0 as 1 over 2 

that is theaverage of the signal you should check always the coefficient for frequency 

zero is the mean of the signal, because of the expression itself. So, plugging N equal 0 

here you would obtain 1 over N sigma x k which is nothing but the sample mean or mean 

of the signal and that is a quick check for your calculations. Then you have c 1 and c 2 

and c 3 notices that c 1 and c 3 are complex conjugates of each other by virtue of the 

property that we discussed here. And this property does not apply to c naught and c 2. 

So, that is something as a quick verification. 
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We will conclude this module with a very important result which when extended to the 

class of random signals leads to what is known as a ((refer time 10:27)) theorem. This 

result says that the power spectrum of a discrete time periodic signal and its auto 

covariance function remember we defined the auto covariance function for discrete time 

periodic signals earlier on in unit 2. They form a fourier pair what it means is the power 

spectrum is the fourier transform or the discrete time you cannot transform, but the these 

a fourier coefficients of the fourier series representation of the auto covariance function. 

So, this is the auto covariance function is the function of the lag l. This is the fourier 

representation for it that is in 7 b and in 7 a I am calculating the power spectrum as a 



fourier coefficient of this representation. And this result is fairly easy to prove I will 

actually leave it to you to verify if this holds.. Of course, you should remember or recall 

the definition of the auto covariance function for a discrete time periodic signal that we 

had in the lecture 2.1. 

So, plug in this expression for the auto covariance function into equation 7 a and show 

that it is the same as what we have here in equation four that is p x x of N should get a 

smart C N square. In fact, as a quick numerical check just set N equals 2 without 

assuming any values for x and you will able to verify the result. Now, why is this result 

so important? For two different reasons, one to compute the power spectrum I need not 

go through the Fourier transform of the signal. I can first compute the auto covariance 

function and then compute the Fourier transforms of the auto covariance function then 

you may ask well. So, what right the point is, when I when I move to class of random 

signals although we do not do that in this course fourier transforms or fourier 

representation ofr random signals do not exists, but auto covariance functions can be 

define for random signals. 

So, what I do is I define power spectrum not via the Fourier transform of those random 

signals, but as the Fourier transform of the auto covariance function. Remember when I 

take the Fourier transform of the signal I have to evaluate the square magnitude in this 

case it is a periodic signal. So, I am going to compute the Fourier coefficient after 

computing the Fourier coefficient I have to take this square magnitude. In this case I 

compute the auto covariance function and the moment I take the Fourier transform of the 

auto covariance function I get the power spectrum.  This result will also be visible to us 

in the case of discrete time aperiodic signals and is used widely in calculating the auto 

covariance function. In fact, the x corr x c o r r routine in the mat lab uses it results it 

actually computes the Fourier transform. And then compute of the given sequence and 

then constructs the power spectrum and then evaluate the inverse Fourier transform to 

get the auto covariance function. Because it is computationally more efficient with this 

note will come to a close this module it is a fairly short one.  

In the next module, we are going to discuss discrete time fourier transform which will 

take us bit more closer to reality, because in reality I am not going to have discrete time 

periodic signal, I am going to have discrete time aperiodic signals more often. And 

therefore, I should know how to deal with them eventually end of the discrete Fourier 



transform which is the most practically relevant version of the Fourier transform to us. 

So, these are couple of references for your perusal of course, there are plenty of other 

wonderful references. 

Thank you. 


