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Hello friends, welcome to the introductory lecture on the course to Introduction to time 

frequency analysis and wavelet transforms. I hope you have gone through the 

introductory video, which briefly described what this course is about, what we are going 

to do in this and the second lecture in introduction. So, the introduction is divided into 

two parts. We are going to gain an overview of the course, what is this course, what is 

this course about and how this course is being organized and the specific topics, that we 

are going to talk about. We will keep the introduction almost free of the mathematics or 

the equations, but occasionally we may use an equation or two to illustrate the point. In 

the detailed lectures we will go through the mathematical part carefully. 

Although this course is titled introduction to time frequency analysis and wavelet 

transforms, predominantly what we are going to look at are multiscale processes; that is 

because there is a connection between scale and frequency and time frequency analysis is 

basically meant for these processes called multiscale processes. 
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So, what are multiscale processes? Well, any process, which has phenomena that are 

occurring at multiple time scales is called a multiscale process. And there are many 



processes out there: natural, man-made, or may be even induced by virtual sampling and 

so on, which are multiscale in nature. There are several examples that one can give for 

multiscale processes, I have listed quite a few here, but we can at least talk about two or 

three examples. 

An example that we can easily relate to is the traffic that we see on the road. If I consider 

the traffic system, I have vehicles driving at different speeds, may be all reaching the 

same destination. So some take longer time and some take shorter time. There are 

situations where of course, each person is going to a different destination. So, if you 

look, if you travel along the road, some vehicles stop driving after a while, some vehicles 

continues to drive and so on. 

Likewise, any system, in any system you will find signals, components of signals that are 

short lived, that is, they only exist for a short period of time and there are certain 

components of signal that persist throughout the signal and so on. So, we say then, that 

the system or this signal has multiscale nature to it. And a classic engineering example, a 

modern engineering example is a fuel cell system where we have, I hope you are familiar 

with the fuel cell system, if not, a fuel cell is made up of two electrodes with the 

membranes separating the electrode. The basic idea is to electrochemically combust the 

fuel, which is hydrogen at one end and then, that is, at the anode with the help of a 

catalyst and then, the hydrogen is split there into proton and electron. The electron 

travels from external circuit and the proton travels through a membrane. So, let me 

quickly draw this schematic for you. 



(Refer Slide Time: 03:54) 

 

So, I have here the anode and then, I have here the cathode and then there is a membrane 

here. Hydrogen is supplied at the anode side and this is split into proton and electron. 

The membrane selectively allows only the proton to go through. And then, there is an 

external circuit here through which the electrons pass and reach this end here where I 

pump in air. Primarily, I pump in oxygen; since air is a good resource for oxygen, we 

pump in air. So, this electron and the proton that travels to the membrane, reach the 

cathode where all these three react to form water. So, in the end I get here water. Now, 

this is the very basic operation of what is known as a proton exchange membrane fuel 

cell, right. 

The single cell, typically a single cell with, you can see, that the single cell is able to 

generate electricity by virtue of this operation. With the single cell, probably, I can 

generate enough power to light a bulb of may be, 50 watts or 100 watts and so on. It is 

not enough to really supply power to an entire household. So, what we do is, we stack 

several cells together depending on the requirements. 

Now, coming to the point. What is happening, either in a single cell or the stack of cells 

are several phenomena. One, you have an electrochemical reaction occurring at the 

anode and then, there is a transfer of protons and of course, as well as electrons. There 

are this fuel supplies that are happening at a certain rate and at the highest of the macro 

scale. You have heat being generated, which basically raises the temperature of the cell 



or the stack. So, you have phenomena occurring at different scales. What we mean by 

scales again here, the speeds at which they are happening and they finish, that is, if you 

take the generation of electron through the electrochemical reaction here, it just occurs in 

a flash, right, in the order of milliseconds. But if you take the generation of, or the 

increase in temperature of the cell or the stack, it obviously, does not occur even at the 

range of seconds, but it can take a few minutes to hours depending on whether you are 

looking at a cell or a stack. So, you have a range of phenomena happening here at 

different time scales. So, this is another example of a multiscale system. 

When I measure signals from these systems, these signals will naturally have this 

multiscale component of course, depending on the sampling rate at which I measure in. 

If the sampling rate is only commensurate with the most a macro scale signal, then you 

will miss out on the phenomena occurring at finer scales. We say, finer scale would mean 

basically finer time scales. Normally, we sample in such a way that at least a few scales 

are captured and therefore, any signal in practice, any system you can imagine to consist 

of multiple scales. So, far any signal out there in reality is a, is a multiscale signal. 

And the issue is when I use traditional techniques, which work at a single scale and I tell 

you what we mean by single scale, then you are not really extracting the multiple scale 

features of the signal. So, you will only get what is known as a global feature. Of course, 

these are technical terms, we will be understanding these shortly. Before we move on it is 

important to understand, that there is a connection between scale and frequency, alright. 

Now, it is not so obvious because this term multiscale is used very widely, even in 

computer vision, in image analysis and so on, right, where there many may not be need 

to even use the term frequency. Here, we use a term frequency because primarily, in this 

course, we are going to look at multiscale analysis of signals rather than looking at 

purely multiscale analysis of images, right. So, it is important to understand the 

connection between scale and frequency. In fact, you can find numerous examples of 

multiscale systems in images. 

So, let us comeback and ask, what is a connection between scale and frequency? Well, 

this is something that we are going to elaborate more in the second part of this talk. But 

very quickly let me tell you, that scale and frequency are inversely related, which means, 

if I am looking at low scales, right, then I am looking at what are known as high 



frequency signals. And if I am looking at high scales, a signal at high scales, then I am 

essentially, searching for what are known as low frequency signals. So, this inverse 

relation is what is to be remembered for. 
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Now, when we talk about wavelets, then we will give more examples on how scale is 

related to frequency and so on. And then, we talk about wavelet themselves. Then, we 

will give a quantitative relation between scale and frequency. So to give you a feel of 

what is involved in analysis of multiscaling signals particularly those, that you will see in 

this course, I have three examples for you, which basically, which will also, which also 

highlight the tools, that we are going to use in this course. Primarily, the tools, that we 

are going to look at are the short-time Fourier transform, the Wigner Ville distribution, 

the wavelet transforms and just peripherally talk about empirical mode decomposition. 

So, the three predominant tools that we are going to consider here are illustrated for you 

in the context of analysis of multiscale signals. So, what you have in each of this plots is 

three panels where the top is the time signal itself, that is, the time series itself and on the 

left panel you have the spectral density giving you the frequency content. This is 

obtained through Fourier analysis. And in the center you have, what is known as, the 

energy density in the time frequency frame. 

Now, this is what is a crux of our analysis. We would like to find out how energies in the 

signal are, how the energy in the signal is, is, a net is coming out as a net contribution of 



components in different frequency bands over different time points, time intervals. So, 

the Fourier analysis gives me the frequency content. So, it gives me an energy 

decomposition or a power decomposition of the signal with respect to each frequency. 

So, it exactly tells me how much each frequency has contributed to the power and energy 

of the signal, but it has no clue as to when this frequency contributed, that is, in, at what 

time or over what time interval this particular frequency component existed and how 

much it contributed, right. 

And when we are dealing with multiscale signals, we said certain components are short 

lived, certain components are long lived and there could be different frequencies 

occurring at different time and so on. Therefore, this spectral analysis is not suited for 

such signals. This is what we mean by saying single scale techniques are not suited for 

analysis of multiscale signals. So, let us look at this plot here. 

The top plot, which is generated by means of wavelet analysis, this is called a 

Scaleogram. What does it tell me? It tells me, on the x-axis I have time and on the y-axis 

I have frequency. It essentially tells me, that there are, this pockets of time intervals, the 

red color corresponds to the maximum intensity. There are this pockets of time intervals 

where those frequencies are contributing maximum to the energy of the signal over that 

interval of course. Whereas, there are other intervals where nothing much is happening, 

right. 

Without really going into further details the main point here is this plot here, which is 

called as Scaleogram, as I said earlier, tells me in how much each frequency band the 

components in each frequency band have contributed to the energy of the signal over a 

certain time interval ideally. Of course, what we want to have, what we would like to 

know is, at what time, what frequency component existed, but unfortunately that is not 

going to be possible by virtue of, what is known as, a duration bandwidth principle, 

which I will talk about briefly bit later. 

Likewise, here I have another signal. By the way, this signal, that we are looking at the 

top is the, it is, it is not a synthetic signal, it is a surface, sea, surface temperature on the 

sea in a certain geographical region. So, by analyzing this Scaleogram, I am able to find 

out the periodicities and when this periodicities occurred, whether the periodicities are 

changing with time. 



Now, coming to the left panel here at the bottom, the left figure at the bottom, I have 

once again three panels and I have explained to you what the top and the left panel are in 

each figure. What we have here the two dimensional plot. Once again, we have all these 

are contour plots by the colours are actually representing the intensity. This plot is 

generated by means of a short-time Fourier transform and it is called as spectrogram. 

Once again, this tells me how much each frequency band has contributed to the, 

components in each frequency band have contributed to the energy of the signal over that 

time interval. So, we are able to obtain local information in time that is a key, that is, a 

keyword that you have to remember. 

Now, the signal here is different from the one that you see there. This signal is coming, is 

out of an industrial control loop of large refinery plan and this kind of analysis helps me 

in figuring out whether there are oscillatory features in the signal. Of course, spectral 

analysis can be viewed that, but more importantly it tells me when these oscillations 

existed, whether the controller was fighting with it, whether it managed to suppress the 

oscillations or whether these oscillations really existed throughout the signal and so on, 

which is useful for diagnosis. 

Now, the third figure that I have is a synthetic signal, but it is representative of many 

natural situations that you may see where you could have two sources, sound sources of 

increasing frequency coming in opposite directions and meeting each other. So, we have 

what are, what is known as a mixed chirp signal and this chirp signals are very common 

in many applications and the joint energy density plot that you see here. The two 

dimensional contour plot that you see is coming out of a smooth pseudo Wigner Ville 

distribution. It is a variant of the Wigner Ville distribution and once again it tells me what 

frequencies existed over what time intervals and it has a very nice localization ability. 

The original Wigner Ville distribution is the, is the mother of these kinds of distributions, 

but it has certain drawbacks and therefore, some modifications are performed. And the 

particular modification that we are looking at is a smooth pseudo Wigner Ville 

distribution. Of course, when the time interval over which these two sources meet, the 

frequencies are very, very closely spaced, that may be your tool is unable to resolve the 

closeness between the two frequencies and that happens with all the tools. 



So, this is to give you a feel now of the different tools that we will be using. The reason 

for showing different energy density plots coming out of wavelets short-time Fourier 

transform and Wigner Ville is to tell you, that there are many tools out there and it is not 

necessary, that always the wavelets transforms, which are very popular will offer the best 

solution. You have to remember, that each application in, for each application you have 

to really ask what you want and then pick the tool rather than picking the tool and then 

searching for an application. 
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In general, so now, from this very quick brief analysis of the figures we should 

understand, that multiscale analysis, the multiscale signal analysis cannot be done by 

single scale techniques such as Fourier analysis. Why do we call the Fourier analysis a 

single scale techniques, I will tell you shortly. But what do we want, what can tool do we 

want for the analysis of multiscale signals? Well, we want a tool that is able to break up 

the signal into multiple time scales, that is, I should be able to zoom in. 

The most important thing, that I require in the analysis of multiscale signals is to be able 

to localize, get the local information in both time and in frequency, whereas Fourier 

analysis gives me very nice local information about the frequency, that is, it will tell me 

exactly what frequencies are present. But it loses out on the local information in time. 

That is why, we say it extracts the global features. It assumes, that the components, that it 

is, that it is searching for their present throughout the signal, whereas the tools, that we 



use for multiscale analysis will not assume that. They assume, that the there are going to 

be components that are short lived, that are going to be long lived, that may be persistent 

throughout and so on. 

And the main point is if you use a multiscale analysis tool for analyzing a signal, you 

will be able to get the global information. Of course, not as finely, as Fourier analysis, 

but not the other way around it. If you use a single scale technique, you will not be able 

to get the multiscale information. So, we say, that we need, we need what is known as a 

zoom in and zoom out feature of the basis functions and we will understand this better 

when we talk about wavelet transforms and so on, right. 
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So, to give a quick historical timeline, the origins of signal analysis in frequency domain 

itself starts off from Fourier’s work more than two centuries ago. And then, gradually 

people found out the, of course, the utility of Fourier transform. But more importantly, 

about 100 and, 100 or 120 years later they figured out, that there are certain limitations 

of Fourier transforms when it comes to the analysis of the so called multiscale systems. 

And then the efforts for devising improvements to Fourier transform began and the 

prominent improvement is the short-time Fourier transform due to Gabor and others. And 

once the short-time Fourier transform was proposed, it was studied comprehensively. But 

then people founded there are certain limitations to short-time use of short-time Fourier 



transform, that there are, it is a better way of doing things for last class of signals and 

that is one wavelet transforms came along. 

But in parallel what happened is, well, people were looking at the transform techniques 

for the analysis of signals. There, there was an effort to directly compute the energy 

without taking the transform root and that those one such effort was led by the Wigner 

and Ville in different contexts. Wigner was working in physics and Ville was working in 

signal analysis, but their efforts were completely different. They avoided the transform 

root because the transform root pose a certain limitations in the analysis of signals and 

therefore, they came up with this Wigner Ville energy distributions, which directly 

computes the energy unlike the transform techniques, which take the transform and then 

compute the energy density. 

So, now what we have today are a course of techniques including, what is known as, a 

empirical mode decompositions, which takes a different stand point. In fact, it is closer to 

what Wigner Ville tries to, Wigner Ville distribution tries to perform in, in terms of what 

is known as an instantaneous frequency and I will talk about it very briefly later on. 
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So, there are several applications and application areas in which you will find multiscale 

analysis. In fact, if you look at the table it is fairly clear, that there is not a single field, 

that has, that is devoid of this multiscale analysis. Everywhere you need the multiscale 

analysis tools and defining on your area, you can pick your favorite area and go about 



doing a quickly literature review to appreciate the breadth of this particular topic of 

multiscale analysis. 


