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Okay, so welcome to lecture 8 of the course, end of last lecture, Shubham who is not here asked

a question regarding the fact that I was actually neglecting the y velocity component in the

diverging channel, so let us just go back and take a look at this channel and if you recall one of

the things that happens is that the x; this is the x direction velocity component and we realized

that vx, the x velocity component is going to be a function of x.

Because it changes in the direction of the flow okay, so what this means is that the flow is not

fully developed okay, so developing flow and because vx is a function of x, it implies that you

will have a y velocity component and that you can see by looking at the equation of continuity.

So, point is that this is not a fully developed flow okay and from the equation of continuity,

which we are going to derive later on today is; we know that dvx/dx + dvy/dy equals 0.
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And since this is non zero because velocity is changing with x, we have dvy/dy is != 0, which

implies that there is going to be some kind of a variation of the y velocity component in the y

direction okay and this implies vy is != 0, so in the strict sense, what I should have done is

taken into account the fact that we have both the components vx and vy but I just wanted to

illustrate the concept of the Eulerian approach and the Lagrangian approach.

And so, I did not really worry about this vy, okay I just wanted to talk about the fact that the

Eulerian approach, you are looking at a fixed point and you just talk about variations at that

point and in the Lagrangian approach, you move with the particle, I just want to illustrate the

idea. So, in some sense, I made a simplification, I just wanted to clarify that before we move

on. 

So,  yesterday  we  assumed  vy  equals  0  to  just  clarify  that  the  difference  or  illustrate  the

difference between the Eulerian and the Lagrangian approach okay. Now, come back to what

we wanted to do today, which is the Reynolds transport theorem. How many of you have seen

this before? Okay, quite a few and quite pretty much everybody okay, that is good but then I did

not realize this, so we are going to do that anyway today and then we will move on.
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So, what we did yesterday was the derivation of the Euler's acceleration formula okay, today we

are just going to extend this to a finite volume region. So, let us consider a flow field, liquid is

moving in this direction, I am going to look at this region, which is a fixed region in space and

that  is  my  control  volume  okay. So,  just  to  keep  life  simple,  we  just  doing  everything  2

dimensional okay but if you want, you can make it to a 3 dimensional thing.

Since  I  can  draw  things  3  dimensional  on  this  2  dimensional  board,  so  we  just  doing  2

dimensional flow fields, so now you have this ellipsoidal oval shape thing which is my control

volume and this boundary of this control volume is my control surface okay. What I am going

to do is; and remember what we are interested in this is; trying to relate changes in control

volume to changes in control mass okay.

So, I am going to look at a particular instant of time t and I am going to look at all the matter,

all the molecules, all the particles which are inside this control volume and I am going to call

that my control mass. So, at time instant t, the control mass is occupying my control volume

okay. So, this is my control surface and this is the region inside is my control volume and at

time instant t, the particles inside the control volume constitute the control mass, okay.

So, instant of time whatever is inside is my control mass and that is occupying a particular

region that I am identifying as my control volume. What is going to happen is at a later instant

of time, a delta t later because of the flow, the particles which were inside are actually going to

move out okay because there is a flow and this; the control mass is going to occupy another

region in space, the control volume is fixed okay.
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This is my solid surface, solid curve that I have, this dashed line represents the boundary of the

control mass at a later instant of time t + delta t okay. So, the dashed line represents the region

occupied by my control mass at t + delta t okay and clearly the mass can move right because of

the flow and so it is occupying a different region in space and that has given by this dashed line

and time t, the control mass is colliding; coinciding with my control volume.
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What I want to do is; I want to; for the sake of clarity, I just want to write this portion on the

left, I am just going to call this region 1, the portion in the middle, which is common to time

instant t and time instant t + delta t, I am just going to call this region 2 and the portion, which

is left the control volume, I am going to call this region 3 okay and what I want to do is; I want

to look at the rate of change of a particular property okay, associated with the control mass.
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So, you can have the property associated either in the control volume or with a control mass, so

what we will do is; we will look at rate of change of a property, say I am just going to call it

capital N, okay, associated with the control mass CM. Now, since it is associated with a control

mass,  you need to  take into  account  the fact  that  is  going to  occupy different  positions  at

different times.

And so what we are looking at is the total derivative or the material derivative okay, so now we

going to use the same notation as last time and although, this may be need extra cautious, I am

telling you, the property associated with a control mass, I am telling you it is a substantial

derivative because I am looking at the rate of change of the derivative of the rate of change of

the property with time.

And this as you all know is nothing but in the limit of delta t tending to 0, the property of the

control mass at t + delta t - the property of the control mass at t/ delta t, okay that is just the

definition of the derivative of the property with time and this is the left hand side, which is the

time derivative, which I would get when I use my Lagrangian approach and what I want to do

is; I want to use this right hand side and try to relate that to changes in my control volume.

So, that is the plan okay, so let us go back a little bit here, I want you to recall that the control

mass; the property associated with a control mass at time instant t is the same as the property,

which is present in regions 1 and 2 because at time instant t, the property of the control mass; is



the control  mass occupying the regions 1 and 2 and so the property NCM is  the property

associated with what is present in 1 and 2, okay.

And a time means t  + delta  t,  the control mass is  now occupying regions  2 and 3,  so the

property associated with the control mass at time instant t + delta t is the property of; present in

the region 2 at time t + delta t and the property present in the region 3 at time t + delta t, okay.

So, you can see that I am shifting from control mass to a region in space and then we will see

how things change in the limiting process.
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So, now we come back to NCM of t, this is nothing but the property associated with the control

mass, which is now occupying regions, 1 and 2, okay. I am going to write this as the volume

integral okay, of evaluated at t + the volume integral over region 2 evaluated at v. So, I am just

indicating that at time is in t, I am evaluating this at time t okay and what I have done is; I am

taking into account the fact that I can actually have variations inside my control volume.

I can have spatial  variations of the property inside my control volume okay. Now, before I

proceed, I want to mention to you that when we are using Reynolds transport theorem, it is

basically going to be applied to properties, which are extensive okay, which are going to be

basically  changing  whether  they  are  going  to  be  depending  on  the  mass  present.  So,  for

example, a property like momentum that is an extensive property because momentum depends

upon the mass okay.



So, what does eta represent? Eta represents a specific property or an intensive version of a same

property okay. So, basically what I am trying to tell you here is; before I proceed, RTT is valid

for extensive properties that is those which depend on mass and if N is my extensive property,

the corresponding intensive property is eta, okay. So, if N is the extensive property, eta is the

corresponding intensive property okay.

So, what you can do is; you can look at NS in a particular region as eta rho dv, so dv is the

volume element okay that I am looking at, rho dv represents the mass element, I am going to

allow for variations of density inside my region, so I want to keep this here, so this gives me my

mass element and this is property per unit mass and therefore, this is going to represent my total

property in that region okay.

And I am going to integrate over the entire region 1 and region 2, I get the property associated

with the control mass okay. So, the triple integral just tells you that this is a volume integral, let

me just say that it is a volume integral okay because the control volume is 1 and 2 together.

Now, I want to look at what is going to happen at time t + delta t.
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At t + delta t, we have NCM of t + delta t that is going to be the property present in the system

at time instant t + delta t in regions 2 and 3 okay because at time t + delta t that is the region,

that is being occupied and I am going to go from CM to control; to volumes now to region in

space and I write this as a triple integral over region 2 of eta rho dv but this is at t + delta t and

then this is; I am forbidden to go past that line, so I come back here, 3 okay.



So, what do you want to do is; you want to subtract and get the numerator NCM of t + delta t -

NCM of t and so we just go back and rewrite Dt of NCM of t as integral; I'm going to combine

say what we observe is that the region 2 is common here as well as in the other term, so I am

going to club those two together, I  am going to Club the other two together  okay. So, the

numerator becomes of my substantial  derivative of my material  derivative becomes integral

over region 2 of eta rho dv of t + delta t - integral over region 2 again of eta rho dv evaluated at

t/ delta t, okay.

That is one of the contributions and then the other contribution is coming from this term, which

is integral eta rho dv over region 3 divide by; and then - integral over region 1 eta rho dv/ delta

t, okay. So, all I have done is rearrange those terms keeping regions 2 together and 2 and 1

separately. Now, clearly these volume integrals  are both over the same region in space and

remember this is all happening in the limit of delta t tending to 0.
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So, I need to remember this otherwise, I am going to get into trouble okay, this is a limit of; in

the limit of delta t tending to 0, what is going to happen is; this corresponds to what, the region

2 is going to coincide with my control mass sorry, my control volume because at time t and

time t + delta t, when you only have delta t changing incrementally; infinitesimally region 2 is

going to coincide with the control volume okay. 
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So, this particular term; this first 2 terms basically represent the change in the property in my

control volume okay and so I am going to write these 2 terms as the partial derivative with

respect to time of integral of eta rho dv, okay over the control volume. So, let me just tell you;

write down what I just said in the limit  of delta t tending to 0 region 2 coincides with my

control volume okay.

And so this region 2, which I had; I have just written it as control volume. So, I am just going to

say that this particular term; the first 2 terms, let me call this A and the next two terms, let me

call this B. So, I have just written A here, okay. Now, we need to worry about this other 2 terms.

What does this represent? This represents eta rho dv in region 3 at time t + delta t represents the

property, which has actually left, the control volume through this part of the control surface

over this time interval from t to t + delta t.

So, this represents the efflux or out flux of the property from the right hand side of the surface,

so maybe I should just; A, this R and B, I have already got an A and a B there, so maybe I

should not use A and B, just use C and D okay and this is L, so R is for right and L is for left.

So, C, R, D is a portion of the control surface and what I am talking about is the integral that

you have over region 3 here represents the property, which has left the control surface through

the fraction C, R, D okay. 

So, I am saying that the property efflux or out flux across C or D is given by the integral over

region 3, okay of eta rho dv/ delta t. So, this is the rate at which the property is leaving okay.

So, this particular term represents the way that means property has left. Now, what about this



term here; eta rho dv and remember this associated with a minus sign, so this is basically going

to be evaluated.

This basically represents in this time t; from t to t + delta t, the property which has come into

the system okay. So and what is come into the system in the region 1 and it is occupying the

region 1 is represented by the last term here and since there is a negative sign associated with it,

it effectively along with the negative sign represents a net efflux, net out flux okay. So, what I

am saying is this is the out flux through that; property out flux through C, L, D is over region 1

of eta rho dv/ delta t, okay.

And since I have written out flux, I must put the minus sign. So, the region 1 basically tells you

what has come into the system because of the flow process and that has the property we just

entered the system through this portion C, L, B to this portion of the control surface CLD,

region 3 tells you what is the property, which has left the system because of the flow. See,

because of flow, what is going to happen is some property maybe momentum or a mass is

entering the system okay and leaving here.

So, this represents what is left, this represents what has entered okay and so basically what this

means this that these 2 terms here combine, which gives you B represent the net rate of efflux,

net rate of out flux across the entire control surface okay. 
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So, the term B represents the net weight of out flux across the control surface okay. So, what I

am going to do is; I am just going to summarize whatever we have done.
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And write this as saying that DDt of NCM, the rate of change of the property associated with

the control mass is = dV, the rate of change of property associated with the control volume and

now remember at a particular time instant, the control volume and control mass are the same

okay, plus the net rate of efflux of the property, okay. Now, since we are all mathematicians, we

do not want this English.

And I am going to now convert this English to some mathematical expression, okay. I just want

to tell you physically what is happening okay. So, how do we go about writing this net rate of

property efflux in the form of a mathematical expression? 
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So, if you look at this control surface and you take a small element okay, this particular area

element will be a source is a vectorial quantity and the direction of the vector is going to be that

of the outward normal, okay. So, this is my area element dA and this is the normal direction

okay. So, dA is a vector element pointing in the direction of the outward normal. Now, if I

wanted to ask, what is the volumetric flow rate?

Because we have a flow problem, what is going to be the volumetric flow rate through this area

element dA, you would find that the volumetric flow rate through dA is going to be given by V

dot dA is the dot product of the velocity vector and the area vector okay, you want the mass

flow rate  is  going to  be given by rho V dot dA and if  you wanted to  know; what  we are

interested in is the rate of flow of the property.

So, along with this mass associated with this mass the property that is going to be leaving is

going to be eta multiplied by rho V dot dA, okay. The property leaving through dA is going to

be eta times rho V dot dA and remember what we are interested in is; the property leaving

across the entire control surface. So, in order to find what the property leaving across the entire

control surface, I need to take the surface integral of this term.

And that will tell me, what I really I am interested in, which is the rate of effects of the property

and maybe I should write this here, across the control surface okay. So, to find the property

leaving in fact, remember this is a rate, okay leaving across the control surface, I need to do the

surface integral and so there are only 2 integral signs of eta rho V dot dA, okay. So, now I am in

good shape.
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I can just write the mathematical expression that I wanted to derive, which is DDt of NCM

equals  the partial  derivative with respect  to time of eta  rho dV + integral  over the control

surface of eta rho V dot dA, so this is Reynolds transport theorem okay and what it does is; it

associates the rates of change of a property of a control mass to the rate of change of the same

property occupying the control volume, where the control volume is taken to be that which is

been occupied by the control mass at a particular instant of time.

And the relationship is given by the fact that you need to account for the fact that property can

enter or leave, this is the control surface okay. So, this basically is what you would measure,

when you are doing using a Lagrangian approach that is the term you would be measuring

because you are talking about a control mass okay and this term is what is associated with the

Eulerian approach.

And this basically tells you that the rate of change associated with the control mass is equal to

the rate of change associated with a control volume plus the net rate of efflux okay, net rate of

efflux of the property across the control surface. So, of course all this is fine, it is just some

mathematical expression but maybe one or two illustrations will possibly clarify things. So, let

us apply this to a couple of properties.
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And okay, let us apply RRT to conservation of mass, now mass is an extensive property, right

because  clearly  it  depends  upon the  mass  present.  So,  now if  you are  applying  mass,  the

conservation; the Reynolds transport theorem to conservation of mass, what is going to be eta?

Yeah, so eta here equals unity, okay. So, let us go back and write; somebody said 1 and this

correct, the control volume rho dV okay, plus the double integral over the control surface of rho

V dot dA.

Now, what I like to do is; I do not like the fact that I have a volume integral here and I have a

surface integral here and this is where the mathematics you will learn comes in useful because

you know how to convert a surface integral to a volume integral okay, you can use one of the

theorems you have learned Green’s theorem, Stokes theorem okay and what we can do is; we

can write this as a divergence over the volume.

And I am going to do 2 steps together now, I am going to make use of the fact that my control

volume was fixed in space okay, so it is not changing with respect to time. What this means is

this time derivative I can actually pull it inside my integral, I can interchange the order of my

differentiation and integration because my control volume is constant it is not changing with

time. So, I am going to do that.

And I am going to convert this to a volume integral okay, rho dV + integral over the control

volume of divergence of rho V dV, okay and now I can combine these two guys together and I

can write this as integral over the control volume of d/dt of rho + divergence of rho v times dV



okay. Now, since we are talking about conservation of mass, I am going to ask you, what is the

left hand side?

The left hand side is identically 0 because by definition, control mass has a fixed collection of

particles; the fixed mass, okay, the mass of the control mass is not changing with respect to

time, the total mass present by definition does not change with time, so the left hand side is 0

okay. 
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So, DDt of NCM is 0 by definition and what this means is; I have 0 equals control volume d/dt

of rho + divergence of rho v DV but remember this is true for any control volume; any control

volume element dv, which means it has to be true for all points. This particular; the only way

this integral can be 0 is if this term identically vanishes everywhere inside my flow field, okay.

Since this is true for all dV, I should actually use any dV.

We must have d/dt of rho + divergence of rho V = 0, identically everywhere, okay and that is

the equation of continuity which you have seen before in the courses in fluid mechanics and

transport phenomena, just couple of points, this particular DDt of NCM can be nonzero, under

what  circumstances?  If  you have a  nuclear  reaction  for example,  because then you have a

material mass, you have a radioactive element.

(Refer Slide Time: 39:25)



And what is going to happen is; it can convert; mass can get converted into energy and that can

be a possibility of this thing decreasing, so I just something I wanted to mention to you okay, so

DDt of NCM equals; is != 0 for nuclear reactions, since as here, mass can get converted to

energy okay. There is another situation, where DDt of NCM can be nonzero and that is when

you are not doing an overall mass balance.

But you are doing a species balance and when there is a chemical reaction taking place okay, so

DDt of NCM is != 0, if we do conservation of species and there is a chemical reaction. So, if

you put your molecules inside, so the total mass of the system will be constant but now you are

not  interested  in  the  total  mass,  so  as  chemical  engineers  we  are  interested  in  sometimes

following what is happening to a particular species, okay.

It could be a reactant or it could be a product, so now if focusing on the products you have a

batch  system essentially,  there  is  no  flow, because  you  are  looking  at  fixed  collection  of

molecules, fixed collection of particles okay but the reaction can take place and you can have

the reactant getting converted into a product okay. So, basically what I am trying to tell you

here is that if you have a chemical reaction taking place, this particular term is going to be

represented by your reaction rate term, okay.

So,  this  DDt of  NCM hence  signifies  the reaction  rate  term okay because I  think  there  is

normally some kind of a confusion which people have, when they are; you know doing these

mass balance equations because we sometimes say that the time derivative is a reaction term



sometimes we say a time derivative is an accumulation term, okay. So, now the point is the

reaction term is coming from the material derivative okay, of associated with the control mass.

Whereas, when you are talking about the other the partial derivative term associated with the

control  volume  that  is  associated  with  the  accumulation  term.  So,  now  I  will  do  what  I

promised you earlier that you have already seen Reynolds transport theorem in a different form

earlier  and maybe I  will  now write the Reynolds transport  theorem in form which you are

comfortable with.
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This term remember is nothing but that associated with the reaction term, rate of change of the

property, so that is what is called in undergraduate classes as a generation term, okay, rate of

generation and this here is associate with a fixed volume in space and that is my accumulation

term and plus, this is minute efflux, so that is my out – in. So, most of you have actually seen

this in different form, sometimes some books have accumulation equals in - out + generation.

Some books write it this way okay, so the point I am trying to make here is this is a form, which

you may be already comfortable  with that  the Reynolds transport  theorem is nothing but a

similar equation as what you have already seen. Only thing is it has been derived in a slightly

different  way, okay in  a  more  general  way and like  I  said earlier,  if  you have  a  chemical

reaction, this guy will be associated with the reaction term, this is a reaction rate.

And this is accumulation; what is happening in the system and this is what is leaving coming in

and out okay, so this is the net rate of efflux, which is out – in, region 3, which show me what



was  going  out,  region  1  which  is  coming  in  okay,  those  are  the  2  terms.  This  is  my

accumulation term associated with region 2, which we had in the derivation and this is the

material derivative okay.

So, because there is always some confusion which people have rather to put the accumulation

term as the rate term or this term, so what do you do when you actually are doing a batch

reactor is; you have nothing coming in nothing going out, the rate of accumulation becomes

equal to the reaction rate okay and so I want you to understand things from this perspective

rather than you know putting things (()) (45:04) some, time derivative equal to a reaction rate

term okay.

It is possibly necessary that you do some problems and we will do that or I will put it; we will

make you do that and then we will hopefully clarify some of these concepts but one assignment,

which  comes  to  my  mind  immediately  is  yesterday  we  had  the  derivation  of  the  Euler’s

acceleration formula right, I told you that is for a particular point, for a particular particle and

this is just a macroscopic version of the same thing.

I want you to tell me if starting from the Euler’s acceleration formula, you can actually get to

the Reynolds transport theorem from an infinitesimal particle, from an infinitesimal region in

space to a macroscopic region. So, that would just be a little bit of mathematics, maybe a little

bit of physics.

(Refer Slide Time: 46:06)



So, let me write down this; can we derive the Reynolds transport theorem from the Euler’s

acceleration formula. I mean you know, if you are doing Euler’s acceleration formula, we did

for  velocity  then  the  property  would  have  been  momentum  but  it  does  not  matter,  you

understand what I am saying, you can just say any property eta and you can try and do this.

This is just to make things different.

Because some people I can see a little bit bored because they see some of these concepts earlier,

so I need to make it challenging for them okay. What we want to do tomorrow is basically do

the conservation of momentum there again unfortunately, will be a small repeat of what we

have done but I will just tell you what we are planning to do, okay.

(Refer Slide Time: 47:12)

So,  tomorrow  we  are  going  to  see  conservation  of  momentum  that  is  the  Navier  stokes

equations and here the intensive property eta is going to be the velocity okay but what we will

do now is; we would write the material derivative of the momentum that is; that associate with

the control mass, we will use Newton's law of motion to relate that to the forces, which are

acting and then relate the forces to the changes in the control volume 


