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So, welcome to the next lecture on multi-phase flows. What I want to do is before I start, I just

want to summarize what we have done so far over the last 4 lectures or so in this class and to

tell you what is going to happen at least in the next 4 lectures okay and you will have some idea

about what is in store for you. So, what we have done is used the fact that all of you have some

basic knowledge of fluid mechanics okay.
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And we have used that and we did not bother to know derive the Navier stokes equations or

anything,  we just  said that we all  know fluid mechanics  and then we decided to analyse a

specific 2 phase flow problem, okay and the thing that we respected ourselves to is laminar 2

phase flow. Now, I just want to emphasize that as far as the entire course is concerned, we are

going to mainly be looking at laminar flows.

We are not going to be looking at  turbulence at  all  because there is a completely different

ballgame, you need to analyse situations using computational intensive methods. The focus here

is  not  so  much  on  computationally  intensive  methods  but  on  getting  a  good  physical

understanding. So, if you were interested in doing a turbulent flow analysis of a 2 phase flow

problem.



What  you  would  be  doing  is  looking  at  doing  direct  numerical  simulations,  doing

computational fluid dynamics okay, so we are not going to be doing all that. So, the reason I am

telling you this is tomorrow, when you are reading papers, you will see that there are people

who are doing fluid mechanics, who are using those kinds of principles, you will see people

who are not using CFD but they are using the kind of methods that we are talking about.

So, but the idea is for you to know the differences and see if we can learn from one technique,

one approach and how we can apply it to another. Similarly, if you are doing turbulence, how I

can use ideas from that method to this, so that is something which you should be clear about

and that is something which not only as far as this course is concerned for anything that you are

doing.

If you are going to be looking at; working on a particular problem, you are working on an area,

which is, maybe reaction engineering or fluid mechanics whatever, there would be so many

things in the same area, you should be able to know what the similarities are and dissimilarities

are, between what you are doing and what somebody else is doing because that is the only way

you can make a more clear in your concepts okay.
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So, what I am trying to tell you now is that what we are doing is mainly non CFD approach

okay but then that gives you a lot of insight tomorrow, when you want to do computational fluid

dynamics, so that is the way you have to take this course okay. So, what we did is; we looked at



stratified flow and towards the end, we were to do the core annular flow and we want you to

basically work out a couple of problems.

The idea is normally, what you would think, when I am pumping 2 different liquids in a tube, if

I pump 2 liquids with; let us say the flow rates of the 2 liquids is Q1 and Q2, the volume

fraction, which is going to be occupied by each of the liquids okay, it is not going to be given

by the ratio of Q1/Q2 or the volume ratio okay. So, that is one of the things which we wanted

you to understand by the 2 examples that we did; the satisfied flow example as well as the core

annual flow example, okay.

So, that is the reason why we wanted you to calculate the velocity profile, we wanted you to

calculate the holdup, the holdup is the volume ratio. So, let us say V1 and V2 are the volumes

occupied inside the channel by each fluid. We want to you to be clear that V1/V2 is != Q1/Q2

and that would be something, which you normally think. I am pumping in 2 liquids with the

same flow rate, so you would expect the half of the tube is occupied by one fluid, half by the

other.

But those of you who have done the assignment will realize that this is going to be decided by

the ratio of the viscosities okay and the reason why the other parameters do not come into the

picture is because we are assuming that we are in the low Reynolds number regime, so that the

density does not show up okay. So, that is one thing, which I wanted you take from the lectures

that we have seen so far okay.

Now, what we want to do is; we want to do things in a slightly more formal setting, we do not

extend, we assume that the interface is not changing in size, in shape as well as the position is

concerned. So, we want to get to the position, where we are able to incorporate the changes of

the interface. So, to make this entire course self-contained, we have to go back a little bit and I

am going to derive.

In the next 3 or 4 lectures, we will do some theory and then we will do some problems. So, the

theory is  going to basically  focus on deriving the Euler's  acceleration formula,  which have

already seen, which then we talked about the Reynolds transport theorem, which is basically a

conservation  principle  okay  and  then  we  will  see  how  we  can  in  generalise  some  of  the

boundary conditions that you saw earlier regarding the pressure jump across a curved interface.



When you have a curved interface in a core annular flow, the surface tension basically, it helps

you; you know evaluate what the change in the pressure is; you need to know the curvature, you

need to know the surface tension and you can estimate what the pressure difference is. So, now

what we want to do is; we want to generalize that to the case where there is flow, so that is what

we are going to do and then we start working out some problems okay.

So,  next  3,  4  lectures  are  going to  be basically  on trying  to  establish  the  thing  on a  firm

theoretical footing. Some of it may be repetitive to what you already see but it is always good

to; you know revise and revisit some things and then go forward. 
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So, let us look at the theoretical basis of; let us say a fluid mechanics okay, not being very

careful with the English here but it is okay. So, normally 2 approaches; you are already familiar

with okay, which you have seen in the past and the 2 approaches in tackling flow problems. The

first one is the Eulerian approach and the second one is the Lagrangian approach okay. So, what

is the difference between these 2 approaches?

What we do in the Eulerian approach is; we are focusing our attention on a fixed region in

space okay and we are trying to understand how things; parameters like velocity temperature

etc change in that fixed region in space. So, now this region in space can be very infinitesimal,

it  can be very small,  it  could be just  a point  and supposing you actually  were to  measure

temperature at a particular point (()) (9:32).



It is going to measure change in temperature, so you get a temperature as a function of time but

that  is  at  a  fixed  position.  So,  what  you are  doing is;  you are  basically  using an  Eulerian

approach, whereas the Lagrangian approach is one where what we are doing is; we are not

looking at a fixed region in space but we are looking at a fixed particle or a fixed collection of

molecules or a fixed molecule.

Because it is a fluid flow problem, the molecule is going to move, so in order for you to be able

to track the change in the temperature, you need to be able to have a probe, which is tagged on

to the molecule okay. If you have a probe, if you have a thermocouple which is able to sense the

temperature of the molecule, as the molecule moves, you will be able to actually measure the

temperature, so then you are actually doing a Lagrangian approach okay.

But now, what is happening is; this probe is going to occupy different regions in space but it is

tracking the same molecule, okay or same particle. So, there is a difference between these 2

approaches.  Now, the  reason why we need to  be clear  about  this  is  because  most  of  your

fundamental laws that we have come across earlier like your conservation of mass, conservation

of energy, you have; are used to those laws in the framework of the Lagrangian approach okay.

Whereas, because when you are talk about mass cannot be created, mass cannot be destroyed,

you are talking about you know, this chalk piece; same set of molecules is going to remain, so

you are talking about a fixed set of particles fixed, you know object. Whereas, what you are

talking about here is fluid mechanics but things are going to be flowing okay, it does not really;

and what you are interested in this, how is the velocity in a particular point.

So, you need to understand the difference between these 2 approaches because what we want to

do is; we want to see how we can extend the fundamental laws like Newton's law of motion,

where you say force is equals, the rate of change of momentum okay. We want to see how I;

because that is for a fixed particle, we want to see how I can extend that to a fixed region in

space because that is what we are interested in.

We want to find out rate of change of momentum and how that depends upon the forces etc. in a

fixed region in space okay. In fluid mechanics, since you have a fluid flow problem, we are; so,

normally what happens here is in a fluid flow problem, you know I am just put a diverging



channel  because I  am going to use this  later on,  you will  have,  you know let  us say fluid

moving from left to right.

If you focus on a particular point here, this particular point is going to be occupied by different

molecules at different times because there is a continuous flow. So, if you want to measure the

temperature here, you will be measuring the temperature of different molecules but at the fixed

point okay. 
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So, if we have a probe at; let us say A, okay, this measures the property of different molecules

but at one point. So, because the probe is here, my thermocouple is right here okay because of a

fluid flow, it measures the average temperature of all these particles there. Now, this is; what

approach is this, this is the Eulerian approach and this is what as an experimentalist, you would

be doing.

You will be measuring at a fixed point in your reactor or your heat exchanger or whatever it is,

whereas, if the probe moves with the fluid and is attached to a molecule okay or a particle okay,

then the probe measures changes of the property of the particle, okay, this moves around in the

fluid and this is your Lagrangian approach and the fact is; we are really not interested in what is

going to happen to the temperature of the particle.

So, if you want to have a probe here, stuck to this particle, maybe some kind of a radioactive

dye or something and you want to try to find out how the concentration is changing, it moves.

We really want to find out what is happening inside my system, once it goes outside my system,



it may not be of interest to us, so there is no point in trying to talk about changes of the material

particle.

Because you are only interested in what is happening inside your heat exchanger, distillation

column,  reactor  whatever  it  is  okay. So,  we need to  therefore  go  ahead to  using  only  the

Eulerian approach okay but what is so special about the Eulerian approach, the fact that the

repeat; most of the laws; conservation laws are in the framework of the Lagrangian approach

and we want to know how to relate  changes in the Lagrangian approach to changes in the

Eulerian approach.

That is the idea okay and once we know; once we are able to do that then, we can go back to

solving the problems. In fact, we have already seen this but maybe in a different context or in a

different framework, so we will just try to relate that. 
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So, just to summarize most fundamental laws are in the Lagrangian framework okay and we

want to apply these laws in the Eulerian framework. Now, I will go back to this problem of flow

in  a  diverging channel  okay to  basically  point  out  what  the  difference  is  between these  2

approaches okay, just to clarify things. So, let us go back to this problem in a diverging channel,

let us look at steady flow.

And to make my life simple what I am going to do is; I am going to assume that the flow is

uniform across the cross section okay, so this is a rectangular channel which is extending to

infinity outside the plane of my board and just to illustrate the idea okay, so I am going to say



and I am going to push slightly smaller arrows here, so the length of the arrow basically is

reflecting the magnitude of the velocity okay.

And what I am trying to tell you here is that the magnitude of the velocity is uniform here, so

the velocity is not changing in the directions perpendicular to the flow. So, if this is my flow

direction in x and this is y, direction does not change in the y direction; the velocity does not

change in the y direction everywhere. So, since the channel is diverging, one of the things we

do expect is that the velocity is going to decrease, as you go along the flow, okay.
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So, you have a uniform velocity here, you have uniform here but the value of the velocity here

is going to be different from the value of the velocity here. So, if you want to call this point; this

section 1 and this section 2 and if you are talking about liquids, then we all know from the

macroscopic continuity equation that rho 1 A1 v1 equals rho 2 A2 v2 okay and we are talking

about liquids, the densities do not change, you will have A1/A2 equals v2/v1.

So, if A1 is lower than A2, v2 has to be lower than v1 and that is the basically is going to

decelerate. So, now I am going to ask you the following question. Supposing, I were to have a

probe which is going to measure the velocity at this point okay, you keep your pitot tube or you

have some device by which you are trying to measure the velocity and if you are going to

measure the velocity here, what would be the value of the velocity which your probe is going to

measure.



It is going to be V1 and this V1 is not going to change with time, right because I am basically

assuming that my flow is steady; steady means at a fixed point in space, the V1 does not change

with time okay so as far as my fixed probe is concerned.
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So, if we have a fixed probe v1 measured does not change with time and this is my Eulerian

approach that is what it will tell us right, this is in the Eulerian framework but now what is

happening to the actual liquid particles, which is moving from here to here? Liquid particles

supposing, you were to actually track a liquid molecule, it has a high velocity here, it has a low

velocity here. So, now the molecule is actually decelerating, okay.

So, the particle per say is having a change in the velocity, so if you want to actually sit to a

particular part; sit on a particular particle, you will find that you are slowing down. Clearly

because v2 is lower than v1, okay. So, in the Lagrangian framework, the velocity of the particle

will slow down okay, since yeah; we have a diverging channel okay. So, it may appear; do you

like, there is some kind of an inconsistency.

You are looking at a particular point, things are steady, things are not changing and whereas, if

you were to actually go but the idea is that you are using 2 different frameworks, 2 different

reference frames for doing your analysis, so depending upon the frame of analysis that you are

working in, you will have 2 different observations. So, what we want to do is; we want to see if

we can actually relate these 2 things, okay.



And that is basically our thing and we are going to extend this to a macroscopic region and that

is what Reynolds transport theorem is. So, first we will do it for a very simple case, which is for

an infinitesimal.
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So, let us relate the observations using these approaches just for and infinitesimal region in

space. Basically, what I mean is point in space occupied by an infinitesimally small object,

okay. So, basically I am not talking about; I am talking about points, I am just trying to make

relate changes in points to changes in infinitesimally small particles that is the idea, okay. Now,

just you are trying to make the things clear, let us talk about a scalar quantity like temperature.

So, now we have temperature is something which you can measure using a thermocouple okay.

So, now let us focus on the temperature in the system. So, now, if clearly in the most general

situation, the temperature in that particular system is going to vary with the spatial coordinates;

x, y, z okay and also time, if you have an unsteady state situation okay. So, now temperature is

can be written as temperature of x, y, z, and t okay.

This  is  the  most  general  variation  of  temperature  that  you  can  see,  spatially  as  well  as

temporally  okay. Suppose,  have your probe,  suppose you can think of an ingenious  probe,

which is tagged onto a particular particle okay and it is moving around the fluid, this particular

probe is going to change its position, it is going to move around, right. So, what this means, the

spatial coordinates x y and z are not fixed anymore they are also going to be changing.



Because now, if you want to use a Lagrangian approach, if you were to actually try to change to

find  out  how  the  temperature  is  changing  of  this  particle,  you  are  going  to  measure  the

temperatures change not only as a function of time but also as a function of position okay. So,

in the Lagrangian approach, if the probe is tagged to a particle, the temperature that is measured

is going to be depending on x y and z with change with time.

Because the particle keeps moving and it  also has retains this explicit  dependency on time,

okay. So, what we want to do is; we want to basically talk in terms of rates of change of the

temperature that you are going to observe from your reading, okay. If you have a temperature

probe, which is giving you data signals, you will be getting temperature as a function of time

and position, okay but of the same particle.

So, this particular change of temperature with time; the rate of change of temperature with time

is going to be what is called a material derivative because I am focusing on a single particle

okay. 
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So, DT/ Dt is nothing but the total derivative, so this is rate of change of temperature with time

of a fixed particle okay and I am using this particular symbol capital D, you will hear this kind

of nomenclature, we were reading books, some people call this material derivative, some people

call  it  substantial  derivative,  okay and this  is  basically  taking into  account  the  changes  of

temperature with respect to both position and time okay.



So, in this framework DT/Dt is nothing but DT/Dt, which is the total derivative, in mathematics

you have come across a partial derivative, total derivative okay. So, this is the total derivative, I

am just  going  to  go  back to  calculus  and establish  this  relationship  between Eulerian  and

Lagrangian frameworks okay without really complicating in the issue too much. This tells me

how for the particle, the temperature changes with time.

And now, I need only differentiate that expression, this functional dependency okay and keep in

mind  that  the  spatial  position  also  are  the  functions  of  time.  So,  now  when  I  want  to

differentiate this thing, find the total derivative, I will get DT/Dt as partial derivative of T with

respect to x times dx/dt + dT/dy times dy/dt + dT/dz multiplied by dz/dt + dT/dt, okay. So, all I

have done is I have just differentiated that expression and I am differentiating that with respect

to time.

And I am telling you that I am incorporating the dependency of x on time explicitly, to take into

account for the fact that the spatial position is changing with time and when you are actually

using the Eulerian frame of reference, what are you doing? You are fixing yourself at a point

and you are trying to measure the rate of change of temperature at a fixed point okay and that is

the partial derivative with respect to time of the object that you are interested in, which in this

case is temperature, okay.

So, what I am trying to tell you is that this last term here represents the Eulerian derivative and

that is how; that is the rate of change of temperature with the fixed probe would measure, this is

the rate of change of temperature, which are variable probe which is moving with a particular

particle is going to measure and basically, this equation which is nothing but we just come from

calculus okay, which is a relationship between total derivative and partial derivative is basically

the relationship between my Lagrangian framework and my Eulerian framework okay.

So, what I am trying to tell  you here is that this total  derivative is what I measured in the

Lagrangian approach and this is what I measure in the Eulerian approach and all I have done is

just use calculus nothing else okay. 
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So, now what I would like to do is; write this in a slightly more general form, which is this

velocity vector is nothing but dx/dt, dy/dt and dz/dt, right, the 3 components of velocity and I

can write gradient of temperature as dT/dx, this is also a vector, dT/dy, dT/dz, I am going to

write these first 3 terms on the right hand side in a compact way as V dot del T okay and what

that relationship gives me now is DT/Dt equals V dot del T + dT/dt, okay.

So, this is the Lagrangian derivative or the substantial derivative or the material derivative, how

does temperature of a particular particle or a particular material change with time, this is how

does temperature at a fixed point changes with time okay and the relationship between these 2

is actually given by this, okay and I can write this for any quantity that I want. In fact, I can

write this for velocity.

I can write this for velocity, this becomes Dv/Dt equals V dot del v + dv/dt, I did not do this for

velocity at the beginning because velocity is a vector and then some of you may not have been

comfortable with gradient of a vector, so I just did it for temperature and having done it for

temperature, I have just written it for velocity okay. We will see how gradients or vectors are

defined later on in the course.

And this is something, which we are all familiar with and this is called the Eulers acceleration

formula okay. Now, going back to this problem of diverging channel, where we spoke about the

fact that the velocity is actually going to decrease as the particle moves, one of the things we

want to do is; we want to see how we can apply the acceleration formula here to that particular

system okay.
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And our flow was steady, so our flow is steady. What that means is the partial derivative with

respect to time is going to be 0, okay, so this is 0, so dv/dt is 0, since flow is steady and what

about Dv/Dt? Dv/Dt is the rate of change of velocity of a particle and we know that it is not 0

because it is decelerating, the particle is actually slowing down, so this is not 0 but what is the

value of this Dv/ Dt, it is v dot del v.

And if  you;  for  a  very  simple  system that  we have,  where  we have  velocity  only  in  one

direction in the flow direction vx, which is actually changing in x direction,  if you want to

evaluate  this  expression,  this  is going to be given by vx dvx/dx, so that tells  you how the

acceleration is for the particle okay and you can find out the; if you know how the area is

changing, you can actually calculate how this velocity is changing with x and you can actually

calculate this.

So,  the  deceleration  of  the  particle,  so  I  just  wanted  to  illustrate  clearly  that  this  is  the

relationship  between  the  Lagrangian  approach  and  the  Eulerian  approach,  this  is  the  time

derivative which you measure at a fixed point, which is Eulerian framework. This is the time

derivative you measure when you are tracking a particle and this is how they are related okay.

What I have done here is for a small at a particular point.

I am just assuming that temperature is a function of x, y, z, I am trying to relate changes of

temperature at a point to it changes of temperature occupied by a molecule at that point, an

infinitesimal  mass,  infinitesimal  volume,  our  objective  next  is  to  generalize  this  to  a



macroscopic system okay. So, the same conservation; so when I do this, when I actually try to

relate  the Eulerian and the Lagrangian frameworks for a macroscopic region, I get what is

called the Reynolds transport theorem okay.

So, extending this  from an infinitesimal  volume to a finite  volume in space,  we obtain the

Reynolds  transport  theorem or  I  will  do is;  tomorrow and the  next  class  is  talk  about  the

derivation of the Reynolds transport theorem, try and show to you that we have already seen the

Reynolds transport theorem in a different form, it is just that we are having a slightly different

way of looking at the problem, okay.

So, you all seen Reynolds transport theorem in some other avatar, we are going to see this in

new avatar now, then we will apply it to deriving the continuity equation, the Navier stroke

equation that you are all familiar with which you have been using. So, once that is established

then we go back to the formulating the boundary conditions and stuff like that but let me, since

I do seem to have a little bit of time, let me just add a few more things.

(Refer Slide Time: 40:09)

So that I can do things in a more relaxed way tomorrow, so just to; I am just going to call this

RTT; Reynolds transport theorem. I want to just introduce 3 concepts, which are very simple

and so makes my life easy tomorrow, control volume and control volume is nothing but a fixed

region in space okay, it can be of any arbitrary step but it is not changing in the fixed region. It

is analogous to my infinitesimal point, okay.



This is space; the boundary of this control volume, which is going to actually demarcate the

volume from the environment, is what I call the control surface, okay. Surface is the boundary

of the control volume okay and then I am going to talk about this other thing, which is control

mass; control mass is a collection of particles, collection of molecules, which have the same

mass, okay.

So, this is a collection of material particles, hence, so this has a fixed mass but it can move

around in space okay. So, just to tell you what the analogues are what we have just seen, this is

have a fixed point okay that is the point, when you are looking at a fixed volume, you are doing

Eulerian approach, when you are looking; tracking a control mass which is moving around, you

are actually looking at the Lagrangian approach, okay.

So, the mass can change shape okay, it can change size but then it is not a fixed region in space,

it gets moving around with the flow. So, what we want to do is; we want to try and extend this

particular  relationship that we have got for an infinitesimal  particle  okay, for occupying an

infinitesimal region in space to a finite size control volume and that is going to be the topic

tomorrow and that would basically be the basis.

If you understand Reynolds transport theorem, if you can actually apply Reynolds, what you

would  be  doing  as  an  engineer  is  you  would  be  applying  Reynolds  transport  theorem  to

different  systems  and  depending  on  the  system,  the  final  form of  the  Reynolds  transport

theorem is going to be different, so what we will do is just give you the general form of the

Reynolds transport theorem and then depending on the particular system, you are going to be

analysing, you will be looking at different final versions of the Reynolds transport theorem. 


