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So welcome to the 6th lecture of multiphase systems and today we will be looking at a very

interesting feature of 2-face flows and multiphase flows in general which is what happens at the

interface between the 2 fluids. So the interesting thing about fluid mechanics is that it is a subject

that transcends entirely different scales. So essentially a fluid is made up of molecules. So you

have phenomena going on the molecular level.

Then we are mostly interested in flows that happen on our scale which means micro to scale of a

few meters. So on that scale you can sort of forget about the molecules and look at the fluid as a

single condensed matter and that is where continuum fluid mechanics comes in which is what

most of us work with and what the Navier-Stokes equations are about and then of course those

equations themselves behave differently on very large scales which is on planetary geophysical

flows and even astronomical flows where things again, you still use the same equations.

But again you are looking at different scales. Now in 2-face flows, the interesting thing is that

even though you may be on a macroscopic scale of, may be micrometers or meters, you still

cannot avoid confronting molecular forces and that is because when you look at what is going on

at  the  interface  between the  2 fluids,  you are  actually  forced  to  deal  with  the  fact  that  the

molecules and the interaction between those molecules are different.
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So for example if you look at the classic 2-face system, water and air, so water and air is a 2-face

system that we deal with constantly. So even if you have a small beaker and you have got some

water here and you have air on the top and I were to, so there is some sort of difference between

the 2 that you can clearly make out if you look at it from some distance and if I zoom in at what

is going on over here, at the interface between the water and the air.

I  will  see  an  interesting  principal  where  for,  I  mean  things  are  much  more  dynamic  and

complicated than what I will draw here but just to give you the picture. You have some water

molecules which I will sort of shade and somewhere at the interface, that again is not a straight

line because of the molecular level, you will just have more water here and suddenly you will

have more air on top.

But the point is that here that are some air molecules at much larger distance from each other. So

what happens to this molecular water that is exactly at the surface. That is the question? So if you

look at the water inside, inside the bulk, say this guy, you will realise that it is being tugged

around by intermolecular forces in different directions and in fact, the way it is arranged inside

so that it will experience forces in all directions and they sort of cancel each other out and they

will keep bouncing around and so.

But the idea is that it gets tugged in many different directions and it sits nicely inside the bulk of



the fluid. On the other hand, the molecules that are on the surface only get tugged downloads in

to the fluid because on top, there is nothing to pull it out. In the case of air, there are very few air

molecules. So it hardly sees anything on the other side but behind it, it still has a lot of water

molecules pulling it in different directions.

The same thing would apply if he even had a water-oil interface because now even though you

have, it is a liquid here, that could be the liquid with different molecular properties and so the

water-water  interactions  are  different  from the  water-oil  interactions.  In  this  case,  water-air

interactions. So what happens is that all these molecules that are sitting on the interface feel a

differential pull towards the bulk of its own liquid and that sort of is the molecular origin for

what we call broadly surface tension and that is what we will be talking about today in detail.

So this is a sort of heuristic picture of why surface tension exists and how we can picture it at the

molecular  level.  But  now if  you want  to  actually  understand why the  water  assumes  a  flat

configuration or if I take the same glass and threw it into the air, why the water will form drops

and why does not it form triangles or why even if I throw it, it will not form a single big drop. It

forms many small drops and so on. 

So to understand these types of interface configurations, we need to couple the equations of fluid

mechanics for the fluid that is water and air and as well as having equation to describe how the

interface behaves. That is to account for surface tension at the interface. So we will see how that

is traditionally done today.
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So essentially surface tension originates at the molecular level but the surface tension parameter

itself which we use in our equations that is a macroscopic parameter and this is the key idea here

that this surface tension that is used in our calculation when we want to understand how water

becomes like a drop or what is the configuration of stratified flow through a micro channel or

why the interface is flat and when is it not flat.

We use  this  parameter  surface  tension  very  often  and  that  although  it  is  coming  from the

molecular scale, it is actually defined only at the macroscopic level and the idea for its definition

originates  from the very simple idea that  you would see at  the molecular  level  as  well  that

basically an interface seeks to minimise its surface energy and this surface energy is given by the

surface  tension  parameter  times  the  area  and that  is  essentially  how surface  tension  can  be

defined which is the surface tension therefore becomes…

So gamma, which is the surface tension, is basically the surface energy per unit area of this 2-

face interface. So basically as scientist we see that these interfaces keep trying to minimise their

area in certain situations so that is why when you take a drop in even vacuum, it will just form a

sphere  immediately  that  is  because  that  has  actually  minimised  its  surface  area.  So  it  is

continually seeking to minimise the surface energy locally and that is how we can characterise

that behaviour using surface tension.
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An alternative way of looking at surface tension is that sounds tension is also the force exerted at

the interface per unit length and that you can see works well with this definition as well. So it is

energy per unit area and energy is nothing but the force into displacement. So it if force per unit

length. The exact nature of surface tension and whether it depends on the fluid motion itself or

whether  it  is  purely  thermodynamic  property depending only on temperature  and weather  it

depends on pressure and so on.

These types of questions are still being investigated where you need to go to molecular level and

see  actually  what  is  going  on  but  if  you  want  to  describe  some  simple  problems  at  the

macroscopic scale, then what we do is just work with surface tension as a parameter, like how I

just laid it out that is just the surface energy per unit are and that can be measured in different

ways.

And once we have this parameter gamma, we can then incorporate it into our equations and do

our calculations. So while it works well for us and that is what we will be doing throughout this

course, is good to bear in mind that surface tension is still an extremely interesting and open area

of research.  So now we will  get down to looking at  forces at  interfaces which have surface

tension.

(Refer Slide Time: 11:21)



And in this class, we will focus on the relatively simple situation of the case of static fluids. So

what I mean by static fluids is we will look at configurations where the fluids are not in motion.

So simply a drop suspended in air is static and yet that drop has a certain configuration of its

interface, that depends on the surface tension or a glass of water sitting on the table, again the

water is static.

And so is the air on the macroscopic scale and in that case again, we have 2 static fluids with

some interface  configuration.  So for  these types  of  problems,  we can work out  simply how

surface tension effects and what are the forces at the interface. Now later on in the course, we

will look at situations where the fluid start to move either because we have applied some stress

or some pressure gradient.

And then things get little complicated because surface tension has to counteract the forces of the

moving fluid itself. So before we go to that stage, in this class we will just look at some of the

very simple yet interesting effects of surface tension in static cases. So very obvious first case

that anyone would want to deal with is the case of a sphere of liquid or it could be gas, so it is

either liquid in the bubble basically. So either a drop of liquid in air or a bubble in a liquid. So

schematically, we can think of it like this.
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So I have this big round drop and let us just call it fluid 1 for generality and then outside, I have

another fluid that is suspended throughout the domain and I can look at this drop and I know that

it is going to be spherical, experimentally I can look at it and it will be a sphere and because that

is the only situation in which everything is in equilibrium which means that fluid 1 is static, there

is no motion inside the drop of bubble and everywhere around it also, everything is static.

And the question we want to answer is, there is a pressure that is felt inside this bubble, P1 and

there is a pressure in the outside fluid as well, P2. Now we know that the reason the fluid is

assuming the spherical shape is because it is time to minimise its surface area or the molecules

are all getting pulled. So naturally there will be some forces at the interface at a time to compress

it into a compact shape.

So then the question arises, why does not it just keep collapsing and keep getting smaller and

smaller and keep reducing its surface area, right naturally. So what will happen eventually is that

as it keeps getting condensed into a smaller packed volume, the pressure will rise within the drop

or bubble and at that point you reach an equilibrium. So clearly P1 != P2. So there has to be

some force that is preventing the bubble from shrinking all the more or some counter pressure is

there that is preventing the bubble from shrinking any further.

And that is why we have an equilibrium shift and these bubbles can be really very stable and



hard to break, that is a big problem in any industrial processes where you have these bubbles

form and you would like to break them but it can be really difficult to do because of this stable

equilibrium that it reaches. So we want to find out how gamma which acts at this interface,

effects this P1-P2. So to do this since the fluids are entirely static, we can adopt a very simple

approach.

(Refer Slide Time: 16:08)

So as pointed out the forces are in mechanical equilibrium, right. So the force exerted by the

pressure which is going to be normal to the interface, is counteracted by the force exerted by

surface tension. Now the problem here is we are not yet in a position in this course to say what

the force is because of surface tension and we will develop that rigorously later on but right now

we will assume that we have not heard of Young–Laplace law as yet which I am sure some of

you have had.

And we just  looked  at  how we can reach  their  heuristically  at  least  by  using  some energy

arguments. So instead of looking at the forces directly, we will do what Laplace himself probably

did at his time and look at the work done for a small infinitesimal displacement. So let us say the

radius from the origin is R and what I want to do is we are saying that this is an equilibrium

configuration.

So there is no net force anymore at the interface because it is at equilibrium. So then any small



displacement you give and calculate the work that will also turn out to be 0 because the work has

just force times the displacement and if the force is 0, then any small displacements will give you

0 work essentially. So we will compute the work done by the pressure forces, the work done by

the interfacial forces and equate them to 0 and see what that tells us about the pressure jump.

So we can start working that out. Let us look at the pressure forces first silver. So the work done

by the pressure will be basically the pressure force at the interface P1-P2 multiplied by the total

surface area. So that is just 4pi R square on the sphere. Now surface tension will also do its own

work and that is why we use the definition of gamma as the surface energy per unit area.

So we need to multiply this surface energy per unit area into the increase of the area that we

would achieve if we make the small dR. So that just comes out to be 4pi R+dR the whole square-

4pi R square and the total work done because of this small displacement will be = 0. So now we

can  proceed  to  simplify  this  and see  what  that  tells  us  about  P1-P2.  “Professor  -  student

conversation starts” (()) (19:50) right, I have a problem. 

The energy (()) (19:57) sorry, yes, yes, I forgot to multiply the force with the displacement, right.

“Professor - student conversation ends” So for those of you all just to follow this, this was the

force on the surface but naturally the work was the force into the small displacement dR but this

directly gave us the energy because we interpreted gamma as surface tension or the energy per

unit area, right. So now that makes sense as well because I needed an infinitesimal here. So what

am I left with? I have P1-P2 take it to the other side.

“Professor - student conversation starts” (()) (20:56) Yes, yes, I kept it out here. (()) (21:06)

right, okay, okay, yes, yes, I missed that, right. “Professor - student conversation ends” So then

it just falls out and if I take dR down and knock this off, it is left with dR but that is not a

problem.  So  after  cancelling  off  the  terms  and  then  taken  the  limit  of  dR  going  to  0  or

recognising that it is an infinitesimal, I land up with P1-P2 as 2 gamma/R.

So what we have here is a relationship for the pressure jump across the bubble when the surface

tension is gamma. So clearly you will see that for 2-face systems with higher interfacial tension,



the over pressure inside the bubble can be much higher, that is the first point. Second point of

course is that bubbles which have smaller area, also have a higher internal pressure. 
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So this simple expression explains a lot of interesting phenomena, like if you have a beaker full

of water and you have bubbles of air, then you will find that if you have a big bubble and a small

bubble, you may think that the big bubble will like to share some of its air with the small bubble

but that does not turn out to be the case.

In fact, after sometime, the small bubble will disappear entirely and give you a slightly bigger

bubble and that seems a little funny but the reason that happens is because the pressure inside

this is much higher than the pressure over here and so if there is some way for the air to transfer,

maybe by dissolution, mass transfer and then absorption, that is what is going to happen because

of this overpressure being greater in the small bubble.

And this is called Ostwald ripening and it seemed in many other processes apart from this simple

system where you have emulsions and small bubbles and things like that. The important thing to

note here is that the pressure inside the bubble is basically larger or if you want to look at it in a

slightly  heuristic  way,  we  can  say  that,  if  you  look  at  the  surface,  the  surface  is  curved

essentially.



And the idea is that any curved surface will have some surface tension force acting on it. So the

pressure which is on the inside of the surface which means that if I have a circle, basically the

surface itself is a circle now and the center of the circle is in the fluid of higher pressure whereas

on the other side, the pressure will be low.

(Refer Slide Time: 25:04)

So let us store the result we have for a sphere and now very quickly having worked through this

problem, let us look at another case and see whether we can generalise from there to a more

general expression for the interfacial force. So first we looked at a sphere and I will just draw

something like this, it you remember that it was a 3-dimensional sphere.
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And now let us look at another situation which may seem a little bit more artificial but it in fact

is encountered in many practical applications as the starting point for a calculation and that is the

case of a cylindrical body of fluid which extends to infinity in either direction. So just extremely

long cylinder and let us see what the difference would be in the pressure on the inside P1 and the

pressure on the outside P2.

Where the surface tension acting everywhere on the surface again is gamma. So let us do the

same equilibrium calculation and let us see what we get. Naturally I am going to have gamma

over there but I want you to fill in the remaining factor. We will calculate P1-P2 multiplied by

the surface area here is just the curved surface of the cylinder 2pi R*, you can take it per unit

length. So just 2pi R and that will be = 2pi R* the displacement of course dR and that is equal to

the change in the surface area. 

So that is just 2pi R+dR-2pi R and equating that, should be able to tell me what the pressure

jump will be. So any answers? 1/R. Right. So the answer is 1/R and you will see that is exactly

easier than the previous problem because here is just 1 surface to look at, just the curved surface.

So now we have the case for a cylinder as well, okay. So now with these 2 cases, let us see if we

can figure out what is going on here because we could continue this way with various imaginary

configurations of fluids at infinitive but would like to get a formula for this.

So in the case of a sphere we had gamma*2/R. Now in the case of the cylinder, we just have 1/R.

So if you look at the origin of the surface tension is because there is the curved surface and in the

case of the cylinder, there is only 1 curved surface because here it is basically flat. If I sit on the

cylinder and look straight, I will not know whether I am on a cylinder or on a flat sheet. It is only

if I look in this direction, I will say oops it is curved.

So there is curvature on only 1 direction whereas if I stand on the top of the sphere, whether I

look in this direction or in this direction, I will see the same curvature which is 1/R. So clearly

the  sphere  is  in  some  sense  more  curved  than  the  cylinder  which  accounts  for  the  higher

overpressure and from this, we can sort of guess at a general law which is basically the Young–

Laplace relationship.
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And what this relationship is again only for static fluid configurations that P1-P2=gamma*…,

right. So the pressure jump or let me get rid of this P1-P2 itself. Just the delta P=gamma*1/R-1/R

prime, this R prime is not the derivative, I am just using this to differentiate 2 different radii of

curvature as they called. So I will explain what this means. Suppose you have a curved surface,

just a 2-dimensional curved surface that is going like this extending outside in this direction.

So in this direction, the surface is kind of flat. It is only curved here. So the way I can define this

radius of curvature is by say at this point A, what I will say is that at this point, tangentially I can

have a circle and that circle will have a radius R. So this is the radii of curvature in 1 direction

and in the other direction, similarly I can find if the surface is curved say downwards, then I can

fit  another  circle  which  lies  in  the  perpendicular  plane and that  will  be  the  second radii  of

curvature R prime.

And we represent the curvature with a positive sign if the centre of the circle lies within the fluid

of interest. So if we take delta P in such a way that we are looking at the jump from fluid 1 to

fluid 2 and if the circle lies in fluid 1, then we say the curvature is positive. In this case, the

curvature is negative because the circle would lie outside. So R itself changes from positive to

negative here.



And in this case, the R prime is 0 because it is just flat. So if we apply this law to the sphere, you

will see that this 2gamma/R is nothing but gamma*1/R which is the positive curvature in one

direction and then when I look in the other perpendicular direction, I still have 1/R because it is

still is just a sphere, so I will get 1/R+1/R, then I should not put a minus, sorry. Plus 1/R and then

I will get 2gamma/R.

So the sign comes out of whether the center of the circle lies inside the fluid or outside and

naturally  for the cylinder, you had curvature in only one direction which was again positive

because  the  circle  center  lies  within  the  fluid  1,  lay  within  fluid  1  and  the  other  radius  of

curvature was 0. Basically in the z direction, things were flat. Sorry the radius of curvature was

infinity. The curvature was 0. Are there any doubts here?
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Alright, so now for the last 10 minutes of the lecture, I would like to engage in a few thought

experiments and I mean these experiments have been done in reality as well but right now, we

will just try to look at what we can deduce by using the Young–Laplace relationship about the

qualitative nature of some surface and to make things more interesting, even though this law is

still valid only for static fluids, we will look at some Quasi static situations.

So what  I  mean by that  is  even though you have flow, that  flow is  not  really  affecting  the

interface.  So a very typical situation is what we have already studied, the case of co-current



stratified flow and here we sought of breeze through it without thinking too much about it but

now really we can revisit the situation and see what is going on. So I said I have a fluid 1 at the

bottom and I have a fluid 2 at the top.

And at that point, we said they are okay the interface was going to be flat and that is totally fine

when you look at the problem for the first time to assume, okay let us study the case of a flat

interface but what we should make sure is that this flat interface does not create any problems in

terms of the force balance around the interface and within the fluids. So what we need to do is in

this problem of course we looked at the balance of the tangential stresses.

But when we came to the balance of the normal stresses, we need to see whether the normal

forces are also in balance. So what happens at this interface of course is that P1, which is the

pressure here, -P2 and they are in a normal stress because of the fluid motion because the fluid is

only moving in this direction and the only stress is exerting is tangential shearing stress. Only if

there was flow happening upwards with the fluid pushed the interface.

But since that is not happening in this version of the problem, that is why it is a Quasi static thing

and I can look at the Young–Laplace relationship.  So then I have P1-P2=gamma*1/R1+1/R1

prime but in this case, both those terms are 0 because the radius of curvature in this direction is

infinity in the sense that if I try to put a circle, I will have to make the circle infinitely large so

that it practically it becomes flat surface.

In the other direction also, we know things are extending out uniformly. So in this case, P1-P2

was actually = 0 and that is what we assumed when we did the problem. So when we had the

fluid driven by pressure gradients  dP/dZ and dP/dZ here as well,  you could have asked the

question how do I know that dP1/dZ is the same as dP2/dZ but that is what we did when we

solved the problem and the reason is that it falls out from this.

Since the pressures have to be equal across the interface, there is no way that the pressure drops

in each fluid can be unequal because say example I will start here at 1 atmosphere each at the

beginning and I am pumping the fluids, or let us say 10 atmospheres. Now if the pressure drop in



fluid 1 is different, then at fluid 2, at some point here, I might have 5 atmospheres and here I will

have 6 if this drops faster, say because it has the high viscosity.

Then naturally I will have a problem because now the interface will not remain flat but I know

that I have to have P1=P2. So it is on this that we concluded really that the pressure drops are

also the same and then it solved the problem. What this also tells you is that if the interface were

not flat for some reason, then you will not have the same pressure terms. If you look at it in the

inverse way. 

So the only way my interface can be flat is my pressure drops are equal and if my interface is not

flat for some reason, immediately the pressure drops cannot be equal in this situation.

(Refer Slide Time: 37:39)

So that was pretty straightforward but now let us look at the interesting system which we have

not  considered  as  yet  that  of  counter  current  flow.  Now  the  counter  current  problem  is

substantially more difficult to deal with and all I want to do here is to try and see how it relates to

the co-current problem and whether just by thinking about the problem itself and using Young–

Laplace, we can reach some conclusions about what assumptions will hold and what will not

hold if we try to move from here to here.

So once again let us begin with a schematic and now I have to be little bit careful about what I



say next. Will the interface be flat or will it be curved? So let us assume since I am just sort of

reading in the dark right now that there is some interface, maybe it is flat. So there is fluid 1 here

and fluid 2 here and the fact that its counter current as I wanted to flow in opposite directions. So

for that to happen naturally, the pressure P2 and P1 will have to drop in opposite directions as

well.

So if the pressure P2 is, this is the high-pressure zone in this fluid but it reaches a lower pressure

zone here for P2. P1 on the other hand has to have its high-pressure zone here to drive the fluid

and reach a low pressure zone at the other end. So now assuming for the moment that the only

velocity is in the X direction, just for the case of assumption, then we can apply once again the

Young–Laplace relation and see whether the interface can be flat as it was in this problem.

So if we come say to this end of the channel and try to apply it,  we get P1-P2=gamma, the

surface tension, *the curvature. So I will have only one curvature because the other guy is going

to extend out to infinity. So in this problem, we saw that, okay, if P1-P2 is equal, the interface

will be flat, I mean P1-P2 is 0, the interface is flat but here we can see that there is absolutely no

way I am going to have P1 and P2 equal at this point, because otherwise I needed to be unequal

for that to be a counter current flow.

So in that case if I were to plug this in, I will see that P1-P2 is actually some negative quantity,

right.  So therefore this  1/R or the radius of curvature relationship  has to be…, right  or this

curvature in this situation is actually going to be negative which means that if I look at fluid 1 at

the centre of the circle, will be actually fluid 2. So now if I redraw the situation remembering that

I actually have a high-pressure zone here and a low-pressure zone here. Then I would realise that

I cannot actually have a flat interface at all.
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This  is  2,  this  is  1.  So now in  the  beginning  of  the  channel,  I  need to  have  my curvature

something like this. So that at any point if I draw a circle, it lies in fluid 2, that is because the

pressure was high here and the pressure was low here. And do the same thing on the other end

and I realise that where the pressure has switch now, so the pressure is actually higher in fluid 1.

So now again the curvature will actually have to reverse and eventually will have to go the other

way round.

And in fact in this type of a problem, this is what interface shape you would expect simply by

using the Young–Laplace type of idea. You realise that the interface cannot be flat now, it has to

deform in this sort of direction but to make any more progress, we have to solve the full problem

because you will see that if my interface is actually curving up, my area for flow is increasing

and then the continuity equation itself will tell me that there has to be a downward flow.

I mean the fluid is going out at some velocity and the area is increasing, it will spread out which

means that there is a component of velocity now perpendicular to the interface. So to exactly

solve this problem, might have to go back and solve the full equation with the force balance that

will come when I include normal stresses perpendicular to the interface but the point here was,

you can still  use the Young–Laplace  law to get  some initial  idea  for  how the interface  will

behave.



And what are the assumptions you need to make at the beginning of the problem and even these

flows have been seen in micro channels. Maybe we can show you some experimental work done

by people in Europe I  think.  There is  a lab where they have done this  counter current flow

problem nicely  and  the  chemical  engineers  would  know that  counter  currents  processing  is

usually more efficient than co-current. Alright so as a final point before I wind up, we will look

at another interesting flow situation and this will probably be coming in assignment in one form

or the other sooner or later.
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So we are looking at, very briefly I will do this so my class is nearly over. I have a core annular

flow problem. Core annular flow is essentially involves one cylindrical pipe and one fluid coats

the wall of the pipe entirely and the other fluid is sent through the center and these core annular

flows are a lot of practical significance especially in the transport of oil because what happens is

unlike the stratified flow problem, you can have one fluid completely contact the wall in core

annular flow.

In stratified flow, both fluids are in touch with the wall. So regardless of if you have a very small

viscosity also, you will still have a lot of shear stress generated by the other fluid but in this

situation, you can actually put the more viscous fluid in the centre and have a thin layer of the

less viscous fluid touching the wall and the entire viscous fluid will just lubricate itself through

the pipe.



So what they do in oil transport is that they mix oil and water and the water actually coats the

wall and you can pump through a lot more oil at the same pressure drop then you would have

done just oil itself. So that is the motivation behind setting these problems and there is a lot of

work being done. The question that we want to address in this class which is what the assignment

will be is to calculate the velocity profile for the core annular case mirroring what we have done

with the stratified flow.

So of course in this case, you will adopt the cylindrical coordinate system because that fits much

better with the geometry of this problem than as the Cartesian during stratified. So if you take

cylindrical coordinates, R and Z, and assume things are symmetric in (()) (45:58) and then go

ahead with the usual assumption, say the velocity in only in the Z direction and so on. You can

simplify the cylindrical coordinates in Navier-Stokes and that should be straightforward.

Then the point where I want you to have to pay some attention to is dealing with the interface

pressure jump. Essentially P1 and P2. So the question is now in this problem what would be the

jump  across  the  interface  because  the  core  is  essentially  a  cylinder  and  then  whether  the

possibility of a purely cylindrical core, whether that can hold the interface of this pressure jump

and the fact that there will be a pressure drop in each fluid.

So I have a dP1/dZ and the dP2/dZ. So questions is, are these 2 pressure drops equal when you

have a cylindrical core and based on that answer that you could get from the Young–Laplace

relationship, we should be able to see if we can get the full velocity profile. Thanks. I will take

any questions if there are?

“Professor - student conversation starts” (()) (47:11) that curvature is 0 or and then in counter

current, then you say that is only in one direction you will have that curvature. Yes, yes, in the

counter current problem, what I am saying is that I am looking at the problem only in these 2

dimensions. In the third dimension, everything is extending to infinity. So it is like a big wall

going straight.



The interface is also curved like a wave but in this direction, the wave just gets repeated. So if I

were to stand at any point and look straight, I will not see any curvature at all. It will just be

straight. Just like the cylinder, there is curvature in one direction but not in the other. But of

course if you take a finite box, then also it could be flat in this direction.

Because if there is no flow perpendicular to the box. So that is still possible but then you will

have some end effects and stuff. So practically what I am saying is that the actual box is sort of

wide. So if I look at the center of the box, I will not see the walls and then it will look something

like that. “Professor - student conversation ends.”


