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Flow in a circular curved channel: Solution by regular perturbation

So good afternoon, today we will be carrying on with the second half of our work on curved

channel flow. So just to recap we are looking at single phase flow through a curved circular

pipe and we have adopted a coordinate system where we have a polar coordinate system in

the cross section.
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And the positive of the cross section is given by the angle theta  from the x axis. So we

quantified the curvature of the channel with the curvature ratio epsilon and that was given by

the radius of the channel a/radius of curvature zeta and so we realize that if the quantity zeta

tends to infinity then we will approach the case of a straight channel, which means that when

epsilon is 0, curvature ratio is 0, I will have a straight channel.

And when epsilon > 0 but of course < 1, I will have a curved channel. So this one bound is

physical characteristic of the geometry. This radius cannot be more than this radius. So that is

the general idea. So realizing this fact we wanted to apply what we have studied in the course

basically  perturbation  theory  and try and understand flow in a  curve channel  as  a  small

approximation  of  perturbation  about  the  case  of  epsilon=0 which  means  about  a  straight

channel.



So yesterday we had derived the Navier-Stokes equation in the toroidal coordinate system,

scale the equations and got the governing equations in terms of epsilon. So today what we are

going to  do is  carry  or  forward  the  usual  procedure  whereby we have  taken asymptotic

expansion in epsilon substituted back in and derived the equations for the 0th order problem,

first order problem and so on.

So before I go to that I want to make a point here that I have said the straight channel case we

approach when zeta tends to infinity but even for a finite zeta for a reasonable zeta you could

still approach in the case of a straight channel if the radius became very small. So why is that

important?
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You imagine you have a microchannel, which has a bend like this. Now the curvature ratio of

this bend zeta is definitely not infinity, it is a very finite value, it is quite a sharp bend in fact,

but you could still approach the limit of epsilon tending to 0 provided the a is small. So even

though one way of looking at the problem is a gently curved channel, one way of looking at

small epsilon.

Another  way  is  a  finite  curve  curvature  but  a  very  small  channel  or  a  narrow  gap

approximation.  So this  where  scaling  comes  into  picture.  So  even though epsilon  is  not

absolutely  tending  to  infinity  if  it  is  relatively  large  compared to  a  that  is  good enough

because a length scale in the problem is a so with respect to a zeta should be large.



So this is once again where the question is what is the physical scale that is important that is

what we do and we scale the problem essentially. So that is what by scaling with a throughout

the problem we got epsilon. So you put epsilon to 0, it could be in either that a is very small

or that zeta is large and that does not really matter as far as the equations are concerned. So I

could basically have a thin channel with sharp curvature or a large channel with a very gentle

curvature.

And both these guys will have the same epsilon kind of geometric similarity. So with this in

mind what I will do now is directly move on with the perturbation calculation.
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So let us consider order of epsilon 0 and in the previous class we have written down the

equations the full governing nonlinear equations. So the first step of course is to consider the

solution  for  u,  v,  w, p.  So  that  is  our  standard  power  series  expansion  where  we  have

expanded the vector field as the 0th order field+epsilon times first order variables.

So we take the asymptotic expansion and substitute back in those governing equations that

we had yesterday and we will arrive at the equations for various orders. So I will start with

the 0th order problem and that we can when you do the calculations to the equations and even

by inspection you will  get  simply the equations  for the straight  channel  and that  simply

Hagen-Poiseuille flow.

So what we will do is I will now write down the full set of equations that you can derive but

the main idea is in those equations you will have all the inertial terms and the viscous terms



but that is when we say that we are interested in looking at unidirectional flow through the

channel as the base case so in that case all the inertial terms will get knocked off and we will

be left with the normal Stokes equations that we get when we solve Hagen-Poiseuille flow.
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So the equation at order epsilon will simply be that is because you remember we scaled the

equation with g so we would have got a -4 over there and only the radial variation of w0

persists. So u and v have gone to 0 because we were saying that the flow is unidirectional. So

this is the standard Hagen-Poiseuille approximation. So finally we will get the solution at 0th

order to be 1-r square.

Actually, this is -4 because delta p and del square v are in the same side, taken to the other

side is -4. So that  is  the standard parabolic  velocity  profile  if  you plotted that we get in

Hagen-Poiseuille flow through a straight pipe. Most importantly u0 and v0 are both 0, which

means that there is no cross velocity in the pipe at all. There are no circulations, nothing is

happening, it is just flowing straight.

So that is the straight pipe solution. Now what you are going to do is when we go to order

epsilon 1, this axial flow w0 is actually going to move round a bend so w0 will give rise to

centrifugal forces that will come into the problem at order epsilon 1. So this is the typical

stepwise procedure in perturbation calculations. The 0th order effect is just flow and at first

order we will start feeling the effects of centrifugal forces.



So once again if we take the asymptotic expansion and go to order epsilon 1, we can derive

the equations. So I will directly write those down and I leave it as an exercise for you to

derive them, which straightforward the usual procedure that we have done so far.
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So at order epsilon 1, so while I am writing this down you should look at  the equations

yesterday and see if you can identify where each term is coming from, from the original

nonlinear equations. So for example this term is coming from the centrifugal force term in the

governing equations and these are the viscous terms, which are order epsilon. So just look

and see if you can identify where it is coming from.



So these are the 4 equations that  we get at  order epsilon 1,  so you have the momentum

equations  in  u  in  the  radial  direction  in  the  eta  direction  in  the  axial  direction  and  the

continuity equation, which is equation number 4. So there are some interesting things that we

need to see in these equations. The first point is that centrifugal force is an inertial term, it is

basically a nonlinear term in the Navier-Stokes equations.

So  when you go back  you  will  see  that  you  had  w  square  you  know in  the  governing

equations. So that term actually is nonlinear and if you want to solve it you would have to

solve the problem numerically  but what we have done here is  by doing the perturbation

approximation, we find that that term which was nonlinear before has come into the problem

now as a linear term.

Because although we have w0 square, w0 is already known from the base problem as 1-r

square. So if you look at this problem, which is in terms of the variables u1, v1, w1 and p1

you  will  find  that  it  is  completely  linear  set  of  equations  firstly.  Secondly,  it  is

nonhomogeneous with the nonhomogeneity being the centrifugal force term, which has w0

square.

So this thing is typical of perturbation calculations in general and you can think of it as a

weakly nonlinear calculation.  So the purely linear  calculation would have never given us

circulations  so that would be equivalent  to putting Reynolds number=0 right.  That is the

creeping solutions or Stokes solutions just puts Re=0 so you neglect all the inertia. If we did

that even at first order, we would have got 0 and 0 here.

And the whole set of equations would be completely homogenous, which means that even u1,

v1, w1, would have been 0. So I would have just persisted with you know flow going round a

bend but  without  any circulations,  if  you take  Re actually  to  be 0,  but  if  you allow for

nonzero Re but say that wait even though there is some Reynolds numbers effects that those

effects are very weak.

We have said that by saying small epsilon. So when we did that you do retain Re and you

retain its contribution but you are able to do that in a way that allows you to calculate step by

step analytically. So in that sense you are accounting for the first effects of the nonlinear



centrifugal force terms. So these are those 2 terms are basically inhomogeneities now in this

set. This is the equation for the correction to the axial velocity.

So w0 is what it is in the straight channel when it curves, it should be corrected by w1. So we

actually find this is an equation for w1 and that of course is the continuity equation. So this

third important thing to notice that if you consider equation 1, 2 and 4, you will see that

nowhere do they contain w1 right. So these 3 equations the momentum equations for u and v,

u1, v1 and the continuity equations are a self-consistent set for you know the 3 variables u1,

v1, p1 and you have 3 governing equations.

So we can actually solve 1, 2, and 4 first and then come here and solve equation 3 for w1.

“Professor - student conversation starts.” Oh sorry yeah, yeah, it is a good question.
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I will come to this term actually, you will actually end up retaining yeah that is it, but I will

come to that later.  “Professor - student conversation ends.” So this is the change in the

pressure gradient in the theta direction. Alright so whatever is saying previously is that we

have 3 equations for 3 unknowns that we can solve first for u1, v1, p1 and then we can come

and solve for w1.

Is that clear? So this will always happen when you have fully developed flow because in fully

developed flow you would not have changes in w1, changes in w with theta in the continuity

equation. So the continuity equation will only involve u and v, so that along with these 2



equations allows me to solve for u, v first and then I can solve for w1, which is the correction

to the axial velocity.

So once again we come back having the whole methodology of perturbation series so what

we have done here if you look at it physically is to say that I have a flow the primarily flow is

axial just going through the channel. So that you first calculate that is w0 then using w0 you

get the centrifugal force that is w0 square and use that to calculate the circulations which are

u1 and v1 that is coming from the centrifugal force w0 square.

See you will get u1, v1 which will be some circulations and some pressure gradients p1 and

that  you use to calculate  now the change on w itself  which is w1 and if  we keep going

forward we will keep doing this. So first calculating the circulation then coming back and

seeing its effect on axial velocity. Then again going back and calculating the circulations and

so on.

So this iterative procedure I mean makes physical sense because you get the base flow, find

the centrifugal force, find the circulations, come back to the base flow and by doing that we

will  increasingly improve our approximation.  So today we will  just look at  order epsilon

which means you just solve these equations up to w1. Alright so now that we have got the

equations and understood what we were about.
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We will get down to the mathematical solution. So as I said we can solve 1, 2 and 4 for u1, v1

and p1. So how do we go about this? You can see that the continuity equation actually has the



form of a 2-dimensional system because there is no w1. So we can use the stream function

formulation  that  we have done previously for 2-D flows. So stream function formulation

works not only for 2-D flows but also when you have fully developed flow.

Because the form of the continuity equation allows me to do that. So if I define I will call it

psi1 becomes it is at order 1, oh sorry write r, eta and this will be identical to the stream

function formulation we have in cylindrical coordinates. So in fact okay so the idea is we

have replaced two of the variables in terms of one variable psi1. So now that we have this

what is the next step that we do when we are looking at stream functions?

Right we have to eliminate pressure from the equations which amounts to taking the curl of

the vectorial form so what we need to do is differentiate, we want to eliminate these 2 terms

right.  So we will  differentiate  this  with respect  to r  and differentiate  this  with respect  to

eta*1/r and subtract right. So that will knock off these 2 terms.
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The other important thing is remembered this equation we will operate on the whole equation

right and on this guy we will do the derivative with r. The important thing to realize is that

when we take the derivative with eta will get cos eta here whereas derivative with r will leave

cos eta free. So when we differentiate and add you will get cos eta together. So you will not

have sin and cos, both the forms will be cos only. So that will tell us ultimately a stream

function psi1 will be of this form.
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You can  split  it  up  into  its  r  dependence  and the  cos  eta  dependence  because  both  the

inhomogenous terms will end up having cos eta right and cos is an even function about eta.

So that means that my stream lines will be symmetric about the left half and the right half

right. See eta=0 is here, so if you have cos eta, -eta and +eta will be equal for cos. So the

stream functions or whatever the circulations we have will be symmetric about the vertical

plane.

So that is something to keep in mind but just proceed with the calculation. Differentiate this

with eta and this with respect to r and then subtract the 2 equations.  “Professor - student

conversation starts.” No, I am differentiating this with 1/r, okay fine yeah, yeah, that will be

better, correct.

(Refer Slide Time: 23:20)



So you first multiply by r and then differentiate with r.  “Professor - student conversation

ends.” 
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Alright so after you eliminate these 2 equations if you have not been able to get it so far you

can go back and work it out, but it will work itself out. You will land up with an equation for

psi1,  so  the  most  important  thing  to  check  is  since  these  equations  were  second  order,

naturally the equation for psi should be fourth order because we have combined 2 equations

into 1, so you can see that it is in fact the fourth order problem.

So you have del square operating on del square psi where del square is given by this operator.

It  is  just  the  del  square  and  cylindrical  coordinates  and  the  right  hand  side  contains  of

inhomogeneity, which  will  have  Reynolds  number  because  that  gives  me the  amount  of

centrifugal force and you have this cos eta dependency like I pointed out earlier because sin

eta gets differentiated to cos eta.

So now whenever you have these types of PDEs you need to see whether you can separate

the  r  dependency  and  the  eta  dependency.  So  in  this  case  if  the  right  hand  side  the

inhomogenous  term  was  0  then  psi  would  be  simply  0  because  you  just  have  no-slip

homogenous  conditions  on  the  wall,  but  v  is  not  0  so  that  is  why you will  have  some

circulation but the eta part is everything in cos eta.

So it makes sense to propose a solution where you have psi1=let me say some function of r

which  we do not  know times  cos  eta  because  if  we consider  this  form here  the cos  eta



dependency would get canceled out so we just check that now whether if we can put this

solution back here whether the cos eta parts go off then we will get an ODE for r. So we can

just try that off.

Easy ways to consider what happens to del1 square because whatever happens here will get

repeated again right in the other operator. So if you put this back here in del 1 square what

will you get? We operate this on psi1 right, you are going to operate this on psi1 that is in the

operation. So f of r will be retained here and cos eta will just pop up right+1/r dou/dou r

operated on this term will retain the f inside the operator and again cos eta will come up.

And the final term; however, you are differentiating with respect to eta twice right. So first

derivative with cos eta will give me sin eta with –sign, second derivative will give me back

cos. So I simply get –f/r square cos eta right. So this whole thing del1 square of psi1 can be

written as del1 square bar which is a different operator acting on f*cos eta okay where del 1

bar operator is dou square/dou r square+1/r dou/dou r-1/r square.

So I hope that is clear, you will need also about this, so the cos eta just pops out.
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So if we substitute this solution here what will end up happening is you will get del 1 bar

square because the cos terms will get canceled off from either side alright. So what we have

ended up with is a fourth order ODE for r. So at this point, this ODE may still look a little

intimidating but actually it is very easy to solve. So that will come by simply realizing that



we can rewrite the operator in a more compact way that allows us to integrate it four times

and get the solution.

So how can we do that? If you look at this expression, it can be written as dou/dou r of

something. So what is that of? This will give us a first term right+u/r right. So this will give

me the first term and if I differentiate taking r out I will get this term, when if I differentiate r

I will get -1/r square times f. Now this itself can be written as another nested derivative I

guess that is right. So now we have written del 1 square in a nested form.

Yeah  “Professor -  student conversation starts.” Okay, okay, fine,  correct.  “Professor -

student conversation ends.” So finally the operator is written in the nested form. So now

you can see that if you want to solve del 1 square=an inhomogenous term. All we need to do

is integrate with respect to r right, multiply by r integrate again and then divide by r. So now

it is really easy to solve this problem. Is it clear now?

I mean once you got this you have this here so to remove the derivative you just integrate

both sides. If you integrate both sides with respect to r this guy will go off, then multiply with

r,  then  integrate  again,  then  divide  by  r  that  will  leave  you with  del  1  square=all  those

operations on this side.

Then you again repeat that 4 more times you will get f1. So f1 will be obtained finally after 4

integrals  with respect to r and then multiplying dividing by r as appropriate.  So now the

problem has been simplified I mean it is such an easy solution that you can get immediately.

So you can work that out.
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So  finally  after  integrating  and  then  applying  the  boundary  conditions  we  will  get  the

following  solution.  So  this  is  what  f1  looks  like  you  all  should  go  back  and  do  the

calculations  for practice.  Alright  so now let  us pay attention to what  f1 is? So f1 if you

remember sorry this is not f1, this is psi1 the stream function. So now if you remember fluid

mechanics theory and stream function, the contours of the stream function will give us the

stream lines in the steady state situation.

So like I said again the eta dependency is cos eta that means it to be symmetric about the

center line. So if we look at just the cross section forgetting about w we just have the cross

section with the radial coordinate r and eta. So if you remember eta goes like this, this is

eta=0  right  and  the  radial  distance  is  r  and  if  you  plot  these  contours  in  Matlab  or

Mathematica, you will get something that looks like this.

And they will repeat at the bottom. So because of cos eta it is symmetric about the mid plane

while the value of function is not symmetric on this side, it is however the contours have the

same shape and from here you can get the velocity  feel  by applying the stream function

formulation. So u is -1/r dou psi1/dou eta. So what is this telling us now? If you look at the u,

you will find that the stream functions give us the circulatory flow.

So what we have seen now to order epsilon 1 is that the flow through this curve channel, the

axial flow creates the centrifugal force that results in secondary flow imposed on that which

has these circulations. So this is how the channel curves. So right so this is the inside of the



channel and this is the outside. So fluid is pushed along the center right and once it hits this

wall, it recirculates back.

And the whole reason why we have these circulations at all is remember that the centrifugal

force here Fc and this centrifugal force is much larger because here w0 square was much

higher, here w0 square is small because it is near the wall so the push in this direction is

much stronger than the push so it is basically like as the fluid gets pushed here and gets

pulled back so you get circulations that is because it is finite here.

If  you had the  infinite  case,  you would  not  get  the  circulations  at  all  because  the  force

everywhere would be the same. So that we will look at a later class but this is essentially the

problem and if you combine this u1, v1 and added with w0, you will get a fluid particle

moving through the channel and also drifting along these stream lines.

So you will get helical vortices. So as it moves to the channel it will do a helix and these 2

vortices are called Dean Vortices and is because of these guys that you have enhanced mixing

in curve channels. So his first paper was in 1927 when he applied the same procedure same

perturbation calculation for flow and he calculated these symmetric stream lines and that is

the first theoretical work that was done on the problem.

So I will not calculate to w1 you can do that as an exercise and the entire thing is given in

Gary  Leal.  So  you  can  work  it  out  and  maybe  hunt  down  his  paper,  he  has  got  some

interesting results that he has and this started off a huge analysis into single phase flow in

curved channels.

Some of you all must have come for my seminar so that is when I did the same calculation

for the 2 phase flow where instead of just having a single phase in the whole domain you

have a core fluid, which is phase 1 and surrounded by the annulus of phase 2 and then you do

the perturbation calculation. So now essential to the governing equations I mean in addition

to the governing equations you have the normal stress condition, tangential stress condition

and all of those being perturb.



So the similar idea can be used in so many different problems and so many variations of this

are there. In fact, on (()) (38:52) in fact how far you can take perturbation. So there is a paper

by Peterson a recent one I think in the maybe 2007 or 2010.
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What he does is he looks at against single phase flow in a curved channel but now he makes

these walls wavy which will remind you of your quiz 2. So in the second quiz we gave state

flow through a channel which had waviness. Here he took the waviness and the curve, so he

has 2 perturbations parameters, one in the curvature and one in the wavy wall and that is the

physics of fluids Peterson, you can check it off.

So then he does it is a double perturbation. So first you perturb to order epsilon square he

went in epsilon which in the curvature and then each of those guys have perturbed in an 2-

dimension perturbation series.
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So then he has a solution of these vortices then become if you look at the stream lines the

stream lines also become wavy and it is quite interesting. So in this sense you can keep going

on adding different effects. Alright, so I think with that we will wrap up our class on Dean

Vortices.

And in the next class we will look at the instability problem which is also studied by Dean in

1928 where there he looks at  you know 2 infinite  walls  where circulations  do not come

immediately but circulations will set in as an instability so there is a subtle difference there

and there we can apply our linear stability analysis 


