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So, welcome to today's lecture and what we will do is; we will continue from where we left off,

okay  and  towards  the  end  of  the  last  lecture,  we had  derived  the  normal  stress  boundary

condition and the tangential  stress boundary condition.  Now, specifically  speaking what we

have done is taken into account the fact that you could have a surface tension variation along

the interface okay.

And there is a contribution of the surface tension variation along the interface in the tangential

stress boundary condition. In the normal stress boundary condition is only the surface tension

which appears nor the variation of the surface tension that is at every point on the interface; the

local value of the surface tension tells you what the difference is between the normal stresses.

Whereas, the difference in the tangential stresses is going to be given by the gradient of the

surface tension, okay.

(Refer Slide Time: 01:20)

So, this is your; this is in fact the most general form of the normal stress boundary condition

and this is your tangential stress boundary condition. So, what I want to emphasize here is that

T is the total stress, which is given by - P + PI + tau, so what we can do is; we can actually



substitute this back in and keep the pressure term separately and the shear stress term separately

and then proceed, okay.

So, if you do that what you will get for the normal stress boundary condition is P tilde - P + n

dot  tau  -  tau  tilde  dotted  with  n  -  gamma  del  dot  n  equals  0,  okay. So,  what  you  have;

supposing, there is no liquid moving inside and you only have your spherical drop, then the tau

term is 0 and the difference in the pressures is going to be balanced by the curvature term,

which is what you are used to from your surface tension courses earlier.

P1  –  P2 =  gamma/  r  or  2gamma/r,  now when  it  comes  to  the  tangential  stress  boundary

condition, you could have a gradient of gamma can be induced by gradients of concentration or

temperature  okay and what  we are  interested  in  is  for  the  Marangoni  convection  problem,

gradients  of  temperature,  so  I  am  going  to  talk  now  about  how  this  boundary  condition

manifests itself in the context of the Marangoni convection problem.

Because once you know how this boundary condition translates to the Marangoni convection

problem, then you can solve because you know how to solve because this is the only new

boundary condition, which is coming into the picture okay, all the other boundary conditions

you are familiar with. 
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For example, in the Marangoni convection, what do I have? I would have let us say a solid wall

here okay and this is my interface, this is my gas liquid interface and let us say interface does

not deform that is; if they mean flat okay, there is no undulation of the interface, let us keep life



simple for right now. Then, what are the boundary conditions you are going to use at the solid

wall, you have temperature equals some fixed value T0, let us say.

You have the  no slip  boundary condition  and the  impermeable  boundary condition  for  the

velocities, those are things which you know how to use okay, then you have the no slip and the

impermeable  wall  conditions.  What  about  here?  Since  the  interface  is  not  deflecting,  the

vertical component of the velocity is going to be 0; okay that is vertical component of velocity

equals 0.

Then, you have the heat loss boundary condition, what is the heat loss boundary condition? If

this is the z axis, boundary condition is –k dT/dz equals h times T - T ambient, there is the other

boundary condition at the interface, okay and what is it now; you normally use as a gas liquid

interface,  you normally say the shear stress is 0, when you have a gas liquid interface,  we

normally say shear stress is 0.

But we have to modify it now, because you have the shear stress equal to 0, when does that;

how does that arise from here, that is a specific case of this general problem okay. T is the shear

stress exerted by the gas and that is 0 because it is inviscid, normally you neglect the gradients

in the surface tension and so that becomes 0 and what you are left with this T dot n = 0; T dot; T

tilde dot n = 0 that is just 0 shear stress condition.
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But now this guy is not 0, okay and so if we want to see how this gets modified that is the idea

okay. So, now the tangential stress boundary condition is modified, so let us look at how to



calculate  this  tangential  stress  boundary condition,  we need to  look at  this  surface  tension

gradient okay and this is the gradient along the surface, let us look at our very specific problem

that we have.

A specific problem I have is; z is in this direction and let us says, x is in this direction and y is

into the board okay. So, I mean I want to derive this tangential stress boundary condition for

this problem here. Now, what is the grad s of gamma? It is actually the gradient along the

surface but if you go back to what I wrote last time, it is the actual gradient - n of n dot del that

is the definition okay.

This is the normal component of the gradient, I am subtracting that from the total gradient and I

get the thing along the surface. Now, what is a gradient operator? It is id/dx + j d/dy + k d/dz

and what is n; n is the vector in the z direction, that is k; -k and n dot del is k dot whatever the

gradients, I will going to give me again d/dz, so I just wanted to show to you that of course,

since I have kept my life simple, n is just k.

But if you had a deformed interface, then you have to go back to calculating n and then doing

the dot product and all that in terms of the function f, okay, so that is your grad s. Now, I need

to get grad s of gamma, how does the surface tension vary but surface tension variation is

induced by the temperature variation. So, I am going to have to define something like gamma as

gamma0 times 1 -; I am assuming that the surface tension varies linearly with temperature okay.

At T = T0, gamma equals gamma0 that is the surface tension value and this tells you the rate of

variation, the way I have defined gamma T, it is a positive quantity because surface tension is

decreasing with temperature, the decreasing part is included in minus sign, okay. So, remember

we have got things; gamma T is positive, sometimes this becomes important, wherever you get

a  dimensionless  number,  which  is  negative  and  you  are  breaking  your  head  as  what  is

happening, okay.

So, now d gamma by; so what I am interested in is grad s of gamma is nothing but i d/dx of

gamma + j d/dy of gamma, so I am going to write this as d gamma/ dt; d gamma/ d temperature

multiplied by d temperature/ dx, okay, so d gamma/ d temperature is nothing but – gamma 0

gamma T, this is the slope of the curve, so this is – gamma 0 gamma T times i dt/dx + j dt/ dy

okay.
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So, all I have done is just use this chain rule d gamma/dx is d gamma/ dt multiplied by dt/dx

and we do not know what these are, right that is something we need to find out and yeah, what

about; see, I found out the gradient vector, I am going to have to take the dot product with my

tangential direction, now there are 2 tangential directions; one is along the x direction, one is

along the y direction, okay.

So, I need to; if I really want to use this equation, I need to find what the component is along

both the directions, so actually that is; this actually 2 equations that is the point I am trying to

make okay. So, let us look at this guy t dot T - T tilde dotted with n, we will keep it simple, we

do not have to sit down and do the calculation because the interface is flat, you can see; quickly

tell me what the components are.

This guy is the fluid at the top, right so that is inviscid, so this is not going to contribute okay, I

want to; yeah that is right, we are not looking at the normal stress boundary condition, we are

looking at the tangential stress boundary condition, right. So, this is actually tau, T here is tau,

why? Because we are doing the tangential balance not the normal stress balance, when you look

at the normal stress balance, only then the pressure comes into the picture, okay.

So, I need to write this as tau - tau tilde dotted n dotted t, what are the components here or what

is tau - tau tilde dotted n? Tau is 0, since we have gas which is inviscid. What about tau tilde?

That is going to be given by; I am interested in tau tilde dotted n, okay and the n is in the z



direction, so the 2 components we are actually going to participate, we are going to contribute

will be tau zx and tau zy, okay.

So, I  have tau zx and tau zy will  be the 2 components  okay, clearly  tau zx is  acting  in x

direction and tau zy will acting in the y direction and so this particular term is my; again a

vector, tau – tau tilde dotted n is again a vector having 2 components. So, now I need to do a

dot product with t, which gives me the unit vector in the x direction and the unit vector in the y

direction okay.
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So, now what I am saying is; we take the balance in the x direction; in the x direction what is it

that is going to contribute? Tau zx and that is given by Mu dw/dx + du/dz, okay that is the

component which are occurring in x direction and this must be balanced by the component here

acting in the x direction. What I am saying is I am taking t in 2 directions; tx direction and ty

direction, okay.

The thing in the x direction is going to be the I term, dt/dx, so this tau zx, there is already a

minus sign, so I am going to move this to this side and the gradient of gamma must be = -

gamma0 gamma T dt/dx that makes component balance and similarly, my y component balance

is going to be Mu times dw/dy + dv/dz, is this clear. So, I am saying that what I have is a

vectorial equation here before I take the dot product.

I am just saying that each component has to be 0 and so I am just saying the dot product in the x

direction and the y direction. So, now I need to make some simplifications, I have assumed that



the vertical component of velocity is 0 everywhere, so dw/dx and dw/dy will be 0 and this

interface, we assume that there is no deflection of interface, so that is the reason, I am unable; I

do not  need to  worry about  the kinematic  boundary  condition,  okay and the  normal  stress

boundary condition.

So, all I do is; I just say that the vertical component of velocity is 0 for all x and y, which means

dw/dx and dw/dy will be 0, okay so, dw/dx equals dw/dy equals 0, if there is no deflection,

okay. Since interphase is flat, this tells you du/dz is 0, dv/dz is 0, Oh, no, du/dz is = that; du/dz

is = that then in case, there is no Marangoni effect, no surface tension temperature, you get your

zero shear stress boundary condition, okay everything is fine.

(Refer Slide Time: 19:18)

So, what I need to do is; I write this equation Mu du/dz equals – gamma0 gamma T dT/dx, Mu

dv/dz – gamma 0 gamma T times dT/dx, this is at the z equals d, the interface. Now, this is fine

but I want you to recall what we did for the Rayleigh Benard problem; the Rayleigh Benard

problem you had; basically, a similar situation, a stagnant liquid, some temperature variation

okay and we have your velocity components.

And if you go back, what we did is; we eliminated a pressure term, we eliminated the velocity

term and finally we ended up with only the 2 variables, the vertical component of velocity and

the temperature, okay. So, what I want to do is, we are going to use the same approach as what

we did for the Rayleigh Benard when it comes to solving. In fact, you guys are going to use the

same approach when it comes to solving this equation.



I am just applying what the procedure is, so I want to get rid of these components of velocities

in terms of the vertical component of velocity and how do you do that? To do that equation

using the equation of continuity, right because that is the one, which relates all these guys, so I

am going to differentiate this with respect to x, I am going to differentiate this with respect to; I

think with some problem, dau t/ dau y, is it, yeah that is good; dau T/ dau y; I am happy.

Then, I am differentiating this with respect to y, then I get; you know something having du/dx,

something having dv/dy, I go by equation of continuity, add, subtract, do something and get

everything in terms of w and temperature okay and then finally, I will have an equation for W

and temperature only two variables like a hat for a Rayleigh Benard, okay, so let us do this,

differentiate this with respect to x.

Mu d square u dx dz equals – gamma0 gamma T, d squared t/ d x squared, I am going to add

these guys and what do I get; adding, I get d/dz of du/dx + dv/dy equals - gamma 0 gamma T d

square t/ dx square + d square t/ dy square and this from the equation of continuity is – dw/dz,

so I get - d square w/ dz squared equals that and which means, Mu multiplied by d square w/ dz

squared equals gamma 0 gamma T.

I am going to put temperature, H is basically telling you is on the horizontal direction or the

surface x and y, okay. So,  basically  this  tells  me that  the  second derivative  of the vertical

component of velocity multiplied by the viscosity equals gamma 0 gamma T times del s square

T that is the boundary condition, which is arising because of your surface tension dependent,

temperature dependence of extinction.

I  want  to  you  to  specifically  realize  that  in  this  boundary  condition,  the  velocity  and  the

temperature are actually coupled okay, the velocity and the temperature will get couple here, so

basically velocity and temperature and coupled, they go hand in hand, they affect each other

and this to this boundary condition, there this coupling is taking place because of the end of the

day, you has to be a some interaction between these 2, it cannot be that they are decoupled,

velocity is doing whatever it wants, temperature is doing whatever it wants.

Because there is a net effect, so this is where, whereas now if you went back to the Rayleigh

Benard  problem,  the  coupling  was  through  the  differential  equation  because  you  have  the

gravity term, which had temperature, okay and you have the velocity term and if you go back to



your equation, you will see that it is a differential equation, which had the coupling between the

velocity and the temperature; temperature and velocity.

In fact, if you were to now go back okay, so that basically I want to tell you that this is a

boundary condition, which you are going to use at the top surface okay, in addition to the other

boundary conditions, which are classical, which are comfortable with, okay, so I just wanted to

point  out  that  when  you  solve  your  equation  for  the  Marangoni  stability  problem  or  any

Marangoni  convention  problem  at  the  interface,  you  will  use  this  boundary  condition  in

addition to other stuff.

Of course, I kept the interface flat, you keep the interface moving, then you need to worry about

how f changes. What I want you to do and I am not going to solve the problem but I am just

going to  tell  you what  exactly  you have  to  do,  so  since  this  problem is  so  similar  to  the

Rayleigh Benard problem, you just have to mimic whatever we did for the Rayleigh Benard

problem, okay.

(Refer Slide Time: 25:56)

And the solution procedure for the onset of convention, so you write down the Navier Stokes

equation, the equation of continuity and the Navier stokes equation and energy balance and

what is the base state that you have; base state is whose stability your interest in finding out that

is the one where the liquid does not move, okay. So, now and this u equals v equals w equals 0

that is the liquid stationary solution and what about temperature?



The temperature is going to be linear but then the boundary condition at the top is slightly

different remember, it is not that the temperature the top surface is fixed, you need the boundary

condition of -; you have to find the linear profile using the condition - k dt/dx equals H times T

- T ambient okay, temperature is linear but upper boundary condition is T ambient, okay. So,

this is what the base state is.

Then, you will do the usual linearization okay, you linearize the Navier stokes equation and

what would you get? You would have the density, the gravity term I am going to treat with

density constant, I am not worried about including the effect of temperature variation of density

in this Marangoni problem, in the Rayleigh Benard problem, I included that. So, for all practical

purposes, my equations for the momentum have decoupled, how?

The coupling occur only through the gravity term, okay so, the point I am trying to make here is

the velocity equations do not depend on temperature because I am (()) (29:11) properties are

constant okay, the rest is constant and so everywhere, my velocity equation are independent but

the velocity equations will affect the temperature equations, it looks like is a one way coupling,

is this clear, okay.

So, that means temperature; so you will get something like del power 4 w equals 0 that would

be your fourth order equation okay, you can do it this way also, if you go back to your Raleigh

Benard problem, have you put the Rayleigh number = 0, because Rayleigh number remember,

contained that  beta;  the coefficient  of the density, how it  changes with temperature,  so the

density is not changing with temperature, we just put that term = 0 that means Rayleigh number

is 0.

So, you can just go back to your Raleigh Benard problem, put Raleigh number = 0, you will get

this, okay, the temperature equation will be del square theta okay equals some – w, something

like that, I have not derived the exactly equation, there may be some parameters here okay, will

be of this form. This is the form because when you do the linearization,  you will have del

squared theta on one side, okay the conduction term.

And then the inertial term will give you this – w, either; yes, it will be -w because the slope is

negative  know, this  is  the  form of  the  equations  not  exact  equation,  the  point  is  theta  is

dependent upon the velocity, it looks here that this is a one way coupling. In a sense, W does



not depend on theta, if you just look at the differential equations that is; what it would appear. It

would appear that w is independent and theta depends on w but actually that is not true.

Why? Because of this boundary condition there, which actually relates the W and temperature

okay, so that is basically what we have to do, you have to remember that although it looks like

they are independent, they are actually coupled to each other and the coupling is through that

boundary condition. So, how do you go about solving this? So, you go about solving this in the

usual way, which is del power 4 w equal to 0 and del square theta = - w.

You assume; you know periodicity in the infinite direction, which is x, okay and seek solutions

of the form e power i  alpha x, then convert  it  to an ordinary differential  equation in the z

direction okay and then you will get solutions and you use the condition that I mean some

arbitrary constants coming, you want to get a nonzero solution to this system of equations, to

find the onset of this thing.

The other important things I missed out is there is a dimensionless number, which is going to

come, when you solve this problem and a dimensionless number which comes is going to come

through this boundary condition here. This dimensionless number which comes is; I mean when

you make the equations dimensionless and when you solve, this dimensionless number is called

Marangoni number, okay.

(Refer Slide Time: 33:08)

And that  will  be  the  dimensionless  number,  which  comes  on  the  right  hand  side.  So,  for

example this equation; the tangential stress condition on being made dimensionless has Ma; the



Marangoni number okay, Ma is the Marangoni number and clearly here again viscosity has a

role to play in the sense, it tries to damp out the convection, if the gamma T is very large, this

surface tension dependency on temperature is large, then that guy is going to overcome the

viscous damping.

So, for sufficiently large values of Marangoni number, you expect to see convection okay, for

yeah and this is the equivalent of your Rayleigh number that you have, in Rayleigh number, you

have the beta term, which was how the density dependent on temperature. Here, we have the

surface tension dependency on temperature and clearly because surface tension is an interface

property, it is going to occur only in the boundary condition, okay.

Whereas, the gravity term is the bulk property, it is occurring in the differential equation, so this

Marangoni number; above Marangoni number critical, we expect convection, okay because of

Marangoni number is 0, when gamma T is 0, there is going to nothing going on, it is going to be

just it as it is the liquid, so your job now is to find this critical Marangoni number, so how do

you go about doing that?

To find Marangoni number critical, we have to seek w as w star of z times e power sigma T + I

beta xx; I beta x; this is x know, x here, yeah, theta as theta star of z times e power sigma T + I

beta x that is periodic solutions in the x direction, which is infinity growing linearly in time

exponentially in time, okay and this is my z dependency, I am going to substitute this in these

equations, it is come by linearization.

I mean you have done this linearization before so many times, so just go back to the Rayleigh

Benard problems, same thing you make it dimensionless like you did earlier and you proceed

okay and what we will do is; we are looking for neutral stability, right. So, the point where

things are just going to go from stable to unstable for the onset of convection, so here again you

can prove that sigma has to be real, sigma is not complex, okay.

So, we are going to find the point of transition from stable to unstable by putting sigma = 0, just

like we did for the Rayleigh Benard problem, okay. So, here sigma is real and so put sigma = 0,

to get the onset of convection clearly, this Marangoni number critical will depend upon the heat

transfer coefficient because there is an extra parameter we just come into the picture, so this is a



heat transfer coefficient, so you will get a biot kind of thing, when you make it dimensionless s

d/k.

So, for different values of biot number, you will get different Marangoni number curves and

again you will have a critical wave number at which the convection is going to start and you

can find out what the wave number is, so the analysis is exactly the same as whatever we have

done for Rayleigh Benard. In fact, I think maybe these days’ things like Mathematica, if you

can get me ordinary differential equation, you can possibly plug it in to Mathematica and get

your solution, get the condition for which the determinant is 0.
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And plot Marangoni number versus the wave number for which you get a nonzero solution,

okay and what this will be for different biot numbers, so that is what I want you to do in fact, I

want you to actually calculate this particular thing more you to calculate Marangoni number

versus beta; beta remember is a wave number okay. We will get some curve like this and this

body like curve is for a fixed biot number; biot number is fixed.

There will be 2 dimensionless parameters in the problem; one is the Marangoni number; one is

the biot number. So, for a fixed biot number, you will find the thing, so biot number is different,

we get one more curve, we get a family of curves and you need to find out what this is and so

this  is  a  critical  Marangoni  number,  okay.  So,  your  job  is  to  solve  these  2  equations  by

substituting this form for the solution just like we did earlier, okay.



And since you have heard earlier, I am not repeating it, so you guys just do it, get and since the

linear equation,  the solution is going to be in the form of sin hyperbolic beta x z, sine cos

hyperbolic beta z, things like that. Then once you have the solutions for theta and this put the

boundary conditions, find an non zero solution by putting the determinant = 0 that determinant

= 0; the determinant of a matrix, which has Marangoni number beta and biot number.

The matrix will have all these 3 parameters, you understand, so a fixed – number, there are 2

parameters  remaining,  Marangoni  number  and  beta,  so  for  different  betas  find  Marangoni

number for which the determinant is 0, get this curve, get that minimum, okay, so that is what

you have to do and that will tell you this thing but the important point I want to emphasize this

is boundary condition because I think that is a new thing here.

And you should be able to include this boundary condition and you should resolve, you can

generalize this for systems, where there is a temperature variation and whether there is the

concentration variation, when there is a liquid-liquid layer, 2 layers of liquids, so many things

can be done, once you understand how this boundary condition has to be formulated, okay. So,

that is as far as Marangoni convection is concerned, so tomorrow we will solve some other

problem, okay. Thanks.


