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So we will get started with the 23rd lecture of the course and what we saw in the last two

lectures is some problems on stability of a system okay. The first problem that we discussed

on stability was that of a well-mixed system so there were no spatial gradients and we only

had time dependency okay. So time dependency has to be retained because you are talking

about how things behave as you progress in time.

So the governing equations  of the system were couple of ordinary differential  equations,

which are actually linked with each other. So they are coupled ordinary differential equations.

Then we did the problem on the reaction diffusion system and the reaction diffusion system it

was the partial differential equation. So that was the level of complexity we added from an

ODE we went to a partial differential equation.

But then we simplified things a little bit by saying that we will consider only one variable and

there is only concentration okay just to illustrate the ideas. So today now what we will do is

we will actually look at a fluid flow problem and in the fluid flow problem, it is going to have

more than one variable the different velocity components okay and the pressure. There is also

going to be temperature, which is going to come from the energy balance.

But then we will again keep life a little bit simple by considering only a single phase. So we

were looking only at one phase and then after we finish this problem then we will get to

doing actually  multiphase flow problems where we have to worry about the tracking the

interface okay. So that  is  just  to tell  you the gradual evaluation in the complexity of the

problems that we are trying to solve.
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So today what we are going to look at is this problem of natural convection and this is also

called the Rayleigh-Benard problem after the scientist who actually analyzed this particular

system and we are  going to  follow that  procedure  and try  to  get  some insight  into  this

problem of natural convection okay and we are looking at single phase as far as the liquid is

concerned okay.

Single phase but now the system will be governed by coupled partial differential equations

okay. So because there is only one liquid we do not worry about things like and of course this

is going to be bounded between solids. We do not worry about things like the kinematic

boundary condition, the normal stress boundary condition of the interface. We do not have to

worry about interface deformation.

After this we will resolve problems where we have to worry about those, also will include

those effects in the model okay. So now what is this problem of natural convection?
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We will keep things simple like we always do. Look at 2 flat plates, this is the y direction and

this is the x direction and this is the z direction okay. Now we have in this coordinate system

2 flat plates, one is at y=0 and the other is at y=H. These flat plates are extending to infinity

in the x direction and in the z direction okay. So we have rectangular plates extending to

infinity in the x and z directions.

The spacing between the plates is H. Now we want to talk about this problem of natural

convection okay. So as opposed to so convection means we are going to have movement and

natural convection as you all know is going to cause by density differences okay. So if you

have a layer of liquid or a fluid at the bottom, which is having a lower density then the layer

at the top, then it will have a tendency to rise up.

Because the density is lower because of the buoyancy it has a tendency to go up and when it

goes up the fluid which is at the top will have a tendency to come down, which is heavier and

so you can have motion, it has circulation set in okay. Normally, the natural convection that

we talk about is caused by density differences, which are going to be induced by temperature

gradients.

So if there is a layer of fluid when there is a temperature gradient, the hot fluid at the bottom

which is at a higher temperature will have a lower density and this guy has a tendency to rise

up okay. So what we are going to do is we are going to solve this problem subject to a

temperature  gradient  okay  and  I  am  going  to  call  the  temperature  here  T0  because

corresponding to y=0.



And I am going to call the temperature here TH, so basically what I am saying is that there

are 2 plates. The lower plate is at a temperature T0; the top plate is at the temperature TH

okay. So  T0  and TH are  the  temperatures  of  the  2  plates  as  the  first  thing  and  natural

convection arises because of density gradients okay. These density gradients can be induced

by temperature gradients.

So you all know that density is the function of temperature okay and therefore we need to

basically  include the effect of this density dependent C on temperature and to be able to

proceed okay.
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Now if you have a configuration of this kind, let  us consider first the case where case 1

T0<TH, which means the lower plate is colder than the upper plate okay. So what does this

mean? You have less dense fluid at the top, more dense fluid at the bottom okay. So that is the

configuration where you will have stability always in the sense that there is nothing which is

going to cause this liquid to go up okay. It is a stable configuration.

So  here  the  less  dense  fluid  is  on  top  of  a  more  dense  layer  okay  and  this  is  a  stable

configuration and we do not expect to see any convection. What about the reverse case? The

reverse case is when T0 is>TH that is the lower plate is hotter than the upper late okay. When

T0 is>TH the less dense fluid is below the more dense fluid. Buoyancy forces this fluid to

rise up okay.



So if you just look at the buoyancy effect, the less dense fluid has a tendency to rise up. So

what is it that is going to prevent this motion? What is it that is going to prevent this less

dense fluid from going up? Basically, the viscous force. Viscosity is like a friction is going to

prevent this liquid from going up okay. So basically what I am saying is viscosity acts as a

friction and opposes this tendency for the liquid to go up.

I am just trying to tell you that there are 2 forces that you have to look at one is the buoyancy

force which is trying to push this guy up and the viscous force which is trying to prevent it

from moving up. So what does that mean? It means that when the temperature difference here

T0-TH is sufficiently small okay, the buoyancy force is going to be less okay in comparison

to the viscous force.

Viscous force of course is going to be decided by the viscosity times the velocity gradient

okay. So that is going to be dominating the buoyancy force. The viscous force will dominate

the buoyancy force when T0-TH is sufficiently low, but what is going to happen if we keep

increasing the temperature of the bottom plate, there is going to be a time, which comes or

there is going to be a value of this lower plate temperature, which comes when the buoyancy

force is going to dominate over the viscous force.

And then liquid is going to start moving okay. So again we have a situation where there is a

critical  parameter  and  this  critical  parameter  experimentally  you  can  think  of  as  the

temperature of the lower plate for a value of this parameter, the lower plate temperature>a

sudden value I expect that to be natural convection.

If the temperature is lower than that critical value, there is going to be no natural convection

because viscosity is basically going to prevent the motion. All I am trying to tell you is that

just  because you have a  small  temperature  gradient  you do not  have to  expect  a  natural

convection to take place okay. It is not that any small delta T is going to give you convection.

You need to have significant amount of delta T.

And what we want to do is we want to see if we can determine what this critical value of

delta T is by posing this problem as a stability problem okay and that is basically what our

strategy is. Our objective is to identify this delta T and get his. Yeah “Professor - student



conversation starts.” Delta T would depend upon on whole bunch of things and that is what

the analysis will tell us.

The analysis will tell us, it will depend upon the properties of the fluid, it will depend upon

the gap between the plates  and what are these different  things on which this  is going to

depend upon the analysis is going to tell us yes but it will depend upon the fluid, it  will

depend upon how strong the density variation is with temperature okay. It will depend upon

the thermal conductivity of the fluid; it will depend upon many things okay.  “Professor -

student conversation ends.”

So here what I am saying is if T0-TH is sufficiently  low then F viscous is more than F

buoyancy and the liquid is static. If T0-TH is > a critical value, if buoyancy will be>F viscous

and we expect to see convection okay. So the question is how do you go about determining

this critical temperature or temperature difference? And like he says it is going to depend

upon the fluid properties, it is going to depend upon space etc.
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So let me just call this delta T critical, which is T0=TH or delta T is T0-TH okay has a critical

value above which we have convection okay. So what we want to do is find out what this

critical value is. So we want to find delta T critical and this is done by posing the problem as

a stability problem. So we want to ask the question in the context of the stability framework

that we were introduced earlier okay.



The another way to look at this whole thing is supposing there is very small delta T, then

what it means is the mechanism of heat transfer that we are going to have is going to be that

of only conduction, that is conduction alone is enough for you to transfer the heat from the

lower plate to the upper plate.  If the delta T becomes high, then conduction alone is not

enough for you to do the heat transfer.

And so in order to facilitate the heat transfer in addition to conduction you have convection,

which is necessary for you to transfer the heat okay. There is one way to look at it also okay,

so that is what I am saying is for low delta T, conduction alone can transfer the heat. For high

delta T, conduction and convection are required for the heat transfer from the lower plate to

the upper plate okay.

Now clearly what we need to do is we need to write down the how do we go about solving

this problem of stability? We need to write out the governing equations.  So what are the

governing equations that are required? One is the continuity equation and the momentum

equations in the x and y direction or rather yeah in the x and y direction. We are going to

assume its infinity in the z direction.

And we also need the energy balance equation because we need to worry about how the

temperature is changing okay. We need to include the energy balance equation also. So the

governing equations are and why do I need both x and y direction?
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Because when the hot liquid here has a tendency to go up okay, this guy the cold liquid from

here is going to have tendency to come down so it is going to get something like a circular

vortex  okay  and  although  I  am extending  this  to  infinity  what  I  expect  to  see  is  I  am

expecting to see a periodically repeating pattern of these kind of cylindrical rolls, so basically

this means that I have this kind of a situation all of the same size okay.

And this is extending to infinity in the z direction. The point I am trying to make here is the

system is extending to infinity in both x and z direction. To keep my life simple what I am

going to do is I am going to exploit the fact that the thing is extended to infinity in the z

direction and look for solutions, which are independent of z okay. So we are just saying the

things are independent of z just to keep it mathematically tractable.

In the x direction also it is extending to infinity but I am not going to use the argument that it

is going to be spatially uniform in the x direction,  I am going to look for a solution just

periodic  in  the  x  direction  okay  and  the  reason  why  I  am doing  this  is  because  of  the

temperature gradient I am going to say that what do I expect physically? I am expecting that

this guy goes up, this hot fluid comes down.

And this is going to occur at some kind of a regular periodic or spatially periodic interval

okay and that is one of things which we want to find out. How does a system behave when

your delta T critical is exceeded okay? When you say convection is going to take place but

how exactly is the liquid going to move, just like we saw yesterday in the reaction diffusion

problem the velocity was 0.

But  when it  became unstable  you have a solution which is  like a parabolic  thing with a

maximum at the center okay. So now beyond a delta T critical what exactly is going to be the

pattern? So I have already given you the answer that one possible pattern is this kind of a

periodic  cylindrical  roll  okay. So  this  is  called  a  cylindrical  roll  clearly  because  this  is

circular, x as infinity to the cylinder and that was the cylindrical roll okay.

So this is one possible pattern and one of things we really want to find out is things like what

is the spacing etc, etc. Yeah, it is fine.  “Professor - student conversation starts.” No, the

actual case in the sense that the actual case is when you are doing experiment. When you are



doing an experiment you would have walls at these 2 ends okay and then you need to actually

how to worry about the boundary conditions.

So supposing you have a very long length in the x direction okay. If you forget the end effects

where the boundary condition is going to prevail and if you focus somewhere in the center,

then this is one possible pattern that you can get okay. Now as we go along I will talk about

that  other pattern is  also possible.  This is  just for easy visualization;  you can have other

patterns like hexagons etc possible when you consider 3-dimensional thing.

When you have variations in the x, y and z direction but then just to keep math simple right

now we are just looking at it this way, but then experimentally and then as we go along I will

explain to you when what decides what pattern and all that okay. So different patterns are

possible.  “Professor  -  student  conversation  ends.”  Now  I  am  beginning  to  read  the

Subham’s mind as dangerous okay. So let us write the governing equations.
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Equations  are  the  continuity  equation,  which  is  divergence  of  u=0  okay  and  says  I  am

neglecting things in the z direction, I do not write the momentum equation in the z direction. I

am just going to write the equation in the x and y direction okay. Momentum equation in the

x and y directions what is that? This is in the x direction right. So this is x direction and the

gravity is not in the x direction and then I have this.

Gravity is there I think downwards, so it is not in the y direction and so just give me a minute.

Yeah “Professor - student conversation starts.” Yeah, so the question is what I have written



is wrong and this equation is valid only for an incompressible equation when you say that the

density is constant, it does not change with x, y time okay. So his objection is I should use the

full-fledged form of the continuity equation, which is there for a compressible fluid okay.

I think that is a very valid objection. In fact, I was expecting that objection.
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So the density variation has to be included clearly okay. So the equation of continuity is that

is the general equation okay and so now the question is, ideally I have to include the density

variation like this, use this form of the equation of continuity. In fact, I need to go back to the

momentum equation also and make some changes because I have actually  pulled out the

density from my derivative term and I need to modify that term as well okay. “Professor -

student conversation ends.” 

So what is it that I am doing here? So now the important thing whenever you are trying to do

an analysis is to develop a model, which is as simple as possible okay but which can capture

the essential physics of the process okay. So what you are saying is correct, I need to use this

particular form of the equation of continuity.

I have actually used the fact that density is constant and I have actually simplified when I

wrote the momentum equations and stuff like that. So that has been an approximation which

has been made okay. So idea whenever you are solving any problem is to keep the model as

simple as possible  so that  you can basically  solve it  mathematically  and try to get  some

physical insight okay.



That is what we are trying to do here. If you want to get the most accurate solution and to the

8th decimal place of the 9th decimal place, then you need to sit here and you know put the

density inside your continuity equation and solve the full-fledged model without making any

assumptions or any approximations. So the question now is what is the simplest thing we can

do which will capture the physics which will retain the physics and give us insight into the

problem that we are studying okay?

So clearly density is a function of temperature, temperature is changing with x and y because

of the density the temperature gradient. So what we want to do is we want to keep the model

simple and so that I can possibly solve it analytically and get physical insight okay and to

answer his question how does this critical delta T depend upon thermal diffusivity, viscosity

etc, etc. Otherwise what are you going to do?

You  are  going  to  have  bunch  of  equations,  you  will  go  to  the  computer,  write  a  finite

difference code and keep running simulations and say oh now it is not convecting, now it is

convecting and you will have no clue as what is going on okay. So we want to basically get

out  of  that  situation  where  we  are  just  going  blindly  to  the  computer  and  doing  some

calculations.

So  we  have  made  an  approximation  here  like  you  have  just  pointed  out  and  this

approximation is called the Boussinesq approximation okay. So let me just write down a few

things.
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We want a mathematical model, which is simple but can capture the essential and important

physics. This gives us physical insight into what is going on okay. Otherwise if we do not

simplify then I will have a bunch of computational results, which we can make head or tail

out of okay.

We will not be able to interpret computational results. We will have a whole bunch of results

coming out of that calculations and then you say if I change my density I got this and when I

change this I got that but then at the end of the day it will be lost okay but then also you

should be careful that even simplify things too much then nothing is happening okay. So I

mean that is the important thing.

But do not simplify too much that you go not get any convection, no matter how much you

are heating it okay. That is although you should be careful about okay, but do not simplify too

much and that I think is the key thing do not simplify too much to lose essential physics okay.

So that is the game you have to do and what I have done now is actually and the way I have

written these equations is we have done what is called the Boussinesq approximation.
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So what is this Boussinesq approximation? The Boussinesq approximation is the thing where

we are making this simplification okay. So now we have to retain the density dependency on

temperature correct because if you do not have the density dependency on temperature there

is no way we are going to have any convection.

So  this  has  to  be  included,  do  you  have  what  to  include  the  density  dependency  on

temperature wherever density is occurring which means I have to include it there, I have to

include it may be here and maybe modify this equation suitably okay or is it possible for me

to include the density dependency only on one term, which is going to be crucial and treat in

all the other terms as if density is being constant okay.

Because if it is a liquid you really do not expect a very, very significant change in the density.

If it is a gas, yes there will be significant changes in density as you change temperature. So

the one term in which you want to actually retain the density dependency on temperature you

guys want to take half a minute and identify which term you want to retain this thing in. The

way I have written it density is occurring in here, here, there and in the equation of continuity

right.

So which term do you think we need to retain the density dependency on temperature? In the

gravitational term because that is the one which is going to give you the buoyancy force okay.

The rho g term is the one so if I have the density dependence on temperature retain in the rho

g term and for all practical purposes everywhere else I am going to assume density is constant

okay.



And basically  that  is  the  approximation  this  Boussinesq approximation  that  I  am talking

about which is basically telling you that everywhere else I am going to treat this as if is the

constant  rho  0,  but  in  rho  g  because  that  has  to  be  retained  for  me  to  get  my  because

eventually it is the density gradient in the direction of the gravity, which is actually causing

the motion okay that has to be retained.

So basically what this means is here we keep rho as a function of temperature only in the rho

g term in the y equation okay. This is necessary to get natural convection at all other places

this we treat density as being equal to a constant, which is equal to rho 0 okay. So what I am

going to do and that is the reason my equation of continuity is written that way as simplest I

did okay.

So we use the divergence of u=0 for an incompressible fluid and I am going to quickly pull a

fast one here put a rho 0 here and a rho 0 there. So just put rho 0 here because at these places

I do not want to include my density dependency or temperature but that term over there rho g

term I keep rho as a function of temperature okay. So only in the rho g term, I retain the

temperature dependency.

And we are going to keep life simple which is assumed a very linear relationship for the

temperature, density dependency or temperature rho0 times 1+beta times T=T0 okay. So rho

0 is the density at T=T0 and everywhere else it is varying linearly. So you just keep this linear

dependency and what does this mean? I need to have beta as positive or negative. Density has

to decrease with temperature so beta is negative.

As temperature increases density has to decrease okay. So now what I have done therefore is

a simplified model okay, that simplification is called the Boussinesq approximation and again

that is the whole motivation for any modeling any exercise you do is see the idea is if you

have to even solve the full-fledged problem at the end of the day this critical delta T that you

are getting with this Boussinesq approximation maybe let us say 80 degree Celsius okay.

With all these complications may be 81 degree Celsius and that you would not be able to do

with your computations, you would not be able to get at that value okay. So I mean as an

engineer for a 1 degree you are willing to compromise if you can you know do a simplified



model  and  get  some insight.  So  that  is  the  motivation  okay. Of  course,  if  somebody  is

teaching a computational fluid dynamics course, he may possibly argue the other way that is

different.

So what we want to do now is we want to written down the modeling equations, we want to

find the steady state okay and what is the steady state that you have? The steady state you

have is going to be one which is stationary where is the liquid is not moving okay.
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So let me go slight sneak into this corner and write this thing as rho 0*1+beta times T-T0 that

is my rho. That is the only place where I am keeping my temperature dependency. So I told

you that we are going to look at this as the stability problem.
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And in order to find the stability problem we need a steady state to find the stability right and

what is the steady state? What is the one possible steady state? The one possible steady state

is the one where the liquid is not moving, the u is 0, v is 0 okay. So a steady state is the one

where the liquid is stationary that means u=0, v=0. There is no motion right. I mean on that

view clearly we expect that that is going to true for low delta T.

And in fact you will see that that is going to be true for normally what the delta T is. So u=0,

v=0 is a steady state for all values of the parameter but then it is stable for low delta T, it is

unstable for last delta T, which is a reason you see the convection okay. So when we do this

you will understand it better but what I want to do now is find out the corresponding variation

in the pressure and the temperature.

Liquid is not moving fine. So how do I find the variation of the pressure and temperature? Go

to  the  momentum  equation.  Momentum  equation  in  the  x  direction  tells  you  dp/dx=0,

pressure is independent of x. This was base state; this is my steady state okay. So this I should

write  as  if  my steady  state  uss,  vss  because  this  is  a  steady  state  whose  stability  I  am

interested in.

And the idea is when this guy become unstable, I have my natural convection just like when I

have the u=0 becoming unstable I had the concentration varying in my reaction diffusion

problem. In my y direction what is the story? In my y direction, you just put uss=0, vss=0,

you get dp/dy=-rho0 g times 1+beta times Tss-T0 okay, but I do not know what the steady

state profile is for temperature and how do I find that?

I find that by I never wrote the temperature equation is it? Oh I need to write the temperature

equation. So in order to find the temperature profile I need to write the temperature equation

which is the energy equation.
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Let me come here and here again I have a rho I keep that as rho 0 okay. So that is your energy

equation in the simplified form, accumulation,  convection,  conduction and I keep density

constant here okay but that is not important and steady state that goes off. So there is no

convection for that particular thing, so there is no motion and again now it is infinite in the x

direction okay.

So we have  a  steady state  solution,  which  is  infinite  in  the  x  direction  and there  is  no

variation of the boundary. So you expect that this will also be 0 and we only have d square

T/dy square=0 okay and this is 0 since infinite in x direction and so the steady state is going

to be given by d squared Tss/dy squared=0 and you have Tss=T0. I mean I need to use the

boundary conditions okay.

Boundary conditions are at y=0; T is T0, at y=H; I have T=TH. So you will get a linear

profile.  Tss  is  going  to  be  of  the  form  Ay+B  and  we  can  actually  calculate  what  the

temperature is going to be. Temperature is going to be linear. So clearly if you have a solid

slab where nothing is moving, your temperature gradient is linear, but only conduction is

taking place and that is the situation we have here.

We have only conduction taking place and so I have a linear temperature profile that is my

base steady state. Once I calculate what the steady state is I will substitute it here and I can

calculate how my pressure is varying in the y direction okay. So that is the idea so what we

have done today is just found this steady state. Now clearly in fact if I have a little bit more

guts, I will actually solve this problem.



At y=0 I need to get T0, so this B must be T0 and at y=H I must get TH right. So y=0 I get T0

and  y=H I  get  TH  that  is  my  profile.  So  that  is  my  linear  profile  for  my  steady  state

temperature okay and what I do is I substitute this here.
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And I can find Tss, dpss/dy can be found as –rho0 g times 1+beta times Tss-T0 is TH-T0

times y/H something like this okay. I just substituted the Tss here. The point I am trying to

make here is that no matter what H is, no matter what TH is, no matter what T0 is this is

always a steady state okay. So this steady state where the liquid is not moving is going to be

valid always okay.

But then as we just argued earlier when the delta T becomes more than a critical value, this is

not  going  to  be  something  which  you  are  going  to  experimentally  observe.  You  will

experimentally observe this only when delta T is lower than a critical value okay. So the fact

that the guy starts moving in actual experiment means that this guy has become unstable so

we want to find this delta T critical by solving the stability of the steady state.

We are going to find out when is this guy becoming unstable okay and just like we have got

some relationship for diffusion coefficient the other day, we are going to find relationship to

find out when this guy starts moving and for that we start with the governing equations, have

the steady state, do the linearization and solve that okay.


