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Welcome to the lecture where we are discussing the stability of the solution to reaction-diffusion

equation, okay and what we did till the last time was we found a solution which was spatially

uniform, which was basically saying that the steady state was 0 for all values of the parameter,

okay. We decided we will ask the question whether such a solution is stable because if stable that

means you will actually observe it. If it is not stable that means you are not going to observe it,

okay.

So, that was a question which we wanted to find out the answer to and in the process what we

did was we found the steady state, we did the linearisation and this was the linearise equation.

Now, what you have to remember is that uss=0 is a steady state for all values of a, d and l. It is

always a steady state, okay that is something which I want you to remember now because recall

that  uss=0 is  steady state  for  all  a,  a  is  something like  a  reaction  rate  constant,  okay, D is

diffusion coefficient and L is the length of the thickness of the catalyst.



So, these are the 3 physical parameters, no matter what you take for all combinations, this is

always possible steady state, okay. Now, the question is will we observe this, that is the question

and answer is yes if it is stable, that is the answer but the question is when it is stable and that is

what we are trying to find out, okay. So, when is this stable, that is the next question and that is

what I am trying to out now when is this particular steady state stable.

So, in the process what we have to do is we have to solve this linear equation which is subject to

homogenous boundary conditions. The boundary conditions are u tilde=0 at x=0 and L, okay.

Since it is a linear equation, we decided to seek a solution in the form of variable separable form

and we substituted this here and then we get this equation; and with a little bit of rearrangement,

you will find that the left hand side is the function of time.

The right hand side is a function only of x and the only way these 2 function can be equal is if

both of these are equal to a constant. So, what I am going to do now, since it is a constant, there

are basically 3 possibilities. The constant can be positive; it could be 0 or it could be negative.
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So, this constant can be positive, 0 or negative, right. What we are looking is a non-zero solution

to this differential equation. I mean 0 is a solution always but if you get 0 as a solution that

means why, your perturbation is 0 but what we want is given a particular perturbation as time

goes to infinity, we want to find out how the system is going to behave.



So, we are interested in finding out a non-zero solution. So, I am going to claim and this is

something you people have to verify that if this constant is positive or if this constant is 0, the

solution to this equation, the second order equation x is going to be 0, okay. What I am saying is

if this constant is positive, let us say plus lambda square are 0, I am saying plus lambda square,

lambda square just to tell you it is positive and a plus sign in front.

There is no way this guy can be negative or 0, the solution to this equation is d square x/d x

square*D+ax=lambda square x is 0 where it is subject to the boundary condition, x of 0=x of l=0.

So, how do I get these boundary conditions on x if these come from the boundary conditions on

u, u is 0 as the 2 ends, so the only way u can be 0 at the 2 ends is if x is 0 at the 2 ends. 

So, x has to be 0 at the 2 ends and then if x is 0 at the 2 ends, I am saying if you solve this

equation, the solution is 0 if you have plus lambda square. If you have d square x/dx square +

x=0 subject to x of 0=x of l=0 also has only the trivial solution x=0, you understand. I want you

to verify this. You can just proceed, do the algebra, find the solution to this, put the boundary

conditions and see if you can get non-zero solution, okay.
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However, if the constant is negative and I am going to indicate that as minus lambda square, then

this equation dx double prime for the second derivative plus ax=-lambda square xa admits a non-



zero solution.  This is  basically  what  you have done all  along in your separation of variable

solution. In your separation of variable solution,  you have assumed this constant be equal to

minus lambda square and you proceed it.

So, the reason why you assume this minus lambda square is because that is thing which gives

you the non-zero solution and that is what you want. If you assume plus lambda square and you

will find that it gives you only the 0 solution, we assume 0 we get only the 0 solution. So, I am

just  trying to  justify  why I  am putting  minus lambda square,  okay, which satisfies  both the

differential equation and the boundary condition.

So, what is the non-zero solution which will satisfy the differential equation and the boundary

condition. I am going to claim and this is something which you people have done whenever you

have done the separation of variables. For example, sin n pi x/L. This is in fact you will have sin

as well as cosine but because of the boundary conditions, you can prove that the cosine term does

not exist, only the sin term exists, okay. 

Sin n pi x/L satisfies the boundary conditions, does everybody understand this, sin n pi x/L. See I

am saying this solution Xn of x, this satisfies the boundary conditions, okay and you can possibly

do this in a slightly more formal way but since I have done this problem so many times and since

you have also done this problem in calculus, you should be able to figure out. I am just jumping

a few steps. Although it satisfies the boundary conditions, I have to make sure that it satisfies the

differential equation, right.

What I do not know yet is the lambda square. I do not know what lambda square is, okay. So, I

am going to substitute this here and find out that the lambda square what it is in terms of this n pi

and the other stuff, that is the plan. So, to find lambda what I will do is I will just substitute the

second derivative which gives me substitute, the solution in the differential equation to find the

lambdas, okay. So, let us do that.

What do we get, you have the d, you have the An and when you differentiate it 2 times you get

minus n square pi square/l square*sin n pi x/L +a*An sin n pi x/L =-lambda square An sin n pi



x/L. So, this is a typical Eigenvalue problem which you people have come across before, okay

and you know that the solution is sin n pi x/L. I am just exploiting the knowledge which you

already have in proposing the solution. Only thing is normally your Eigenvalue performance will

not have this ax term.

Now, there is an extra ax term here. You have solved problems where you have x double prime=-

lambda  square.  So,  all  I  am doing  now is  I  am going  to  realize  that  An  sin  n  pi  x  exists

everywhere and so this equation because I am interested in a non-zero value, An sin n pi x is not

0, I can cancel it off.
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What I get is the diffuse coefficient*n square pi square/L square +a=-lambda square, okay. So,

basically what I am trying to tell you is that the lambda square. Remember what is n, n goes from

1, 2, 3…. etc., it is an integer, okay. Correspond to different values of n, I will have different

lambdas,  so I am going to put a subscript n here. Now, I put this constant as minus lambda

square. So, what will be the solution for T. The T of t is going to be of the form e power minus

lambda n square t, okay, that will be the solution for T.

So, I am saying that u tilde is, if you remember your separation of variables is going to be

summed over all these ends and is going to be of the form e power minus lambda n square t*An

sin n pi x/L. So, this is basically how the perturbation is going to change with both space and



time. Now, this is the mathematical solution which we have obtained but I want you to think of

this thing in physical terms. When you are giving a perturbation or a disturbance to the solution,

the  solution  is  us=0,  you  are  giving  some  perturbation.  What  happens  because  of  this

perturbation. In some points, instead of 0 you have a non-zero value for the u, okay.

The perturbation is the deviation of the actual value from the steady state. So, we can do is we

can thing of the perturbation at time t=0 which is when I am starting the experiment as going to

be some function of x as a function of x in the interval from 0 to L. Now, if you were to extend

this function of x periodically, okay, you can basically represent this function of x in the form of

4ier sine series. So, what we have done is think of an arbitrary perturbation.

If you had expanded this in the form of 4ier sine series, the time t=0, these coefficients would

basically tell you how this particular disturbance is resolved along these components. So, this is

just like resolving a vector in terms of some basis of vector. You take an arbitrary vector, you can

write it in terms of some basis e1, e2, e3, 10001, 10001, okay. So, therefore you should look at

this is, look at some function which is your perturbation at time t=0 is resolved in terms of these

Eigen functions, okay, the sin.

Now, the question is our interest is to find out how do things behave as time t goes to infinity.

Clearly that is going to be decided by the lambda n square, okay. There is already a negative sign

here, so if the lambda n square was negative, then this negative and negative would be positive

and you would have the thing blowing up, becoming unstable. If lambda n square is positive,

then it is going to decay, okay.

So, let me just summarise whatever I have said and then how we calculate lambda n square that

basically depends upon the diffusion coefficient, the geometry, the red constant, that is what you

want, okay. So, that is basically the link in the loop which you are trying to close.
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So, at time t=0, we give a perturbation and this is u tilde of x, t=0 okay, and what I am saying is

when I write u tilde of x, t=0, my solution is An sin n pi x/L. I am just saying that what we are

doing is this is a function of x and resolving this function of x in terms of the basis function, just

like you resolve a vector in terms of basis vector, okay. So, this is the sin n pi x/L are by basis

function and we resolve the disturbance along these components, okay.

That is the way I would want you to look at this physically, mathematically of course you got the

solution, okay. So, how does each of this. Like for example, in the finite dimensional problem

you had a vector disturbance, you had 2 Eigen vectors and you wrote it in terms of 2 Eigen

vectors. Instead of 2 Eigen vectors, I have an infinite (()) (18:33) where this summation is going

from n=1 to infinity.

So, from what was the finite dimensional problem, we have moved to an infinite dimensional

problem, okay. So, this is our basis function, okay and the evolution of the disturbance is given

by e power –lambda n square t, okay, the time dependency and what we are interested in is as t

tends to infinity, the guy has to go to 0. So, lambda n square is positive for all n, then as t tends to

infinity u tilde tends to 0 and we have a stable steady state, okay, else the steady state is unstable.
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So, now remember lambda n square=D times n square pi square/L square-a, okay. So, I have

different Eigenvalues. Lambda 1 square=D times pi square/L square-a. Lambda 2 square is and

so on and so forth, right. So, now what do I want. If lambda n square is positive for all n, then we

have a stable steady state, okay. So, if D pi square/L square-a<0, that means this guy is positive. I

do not like this. I am doing something wrong. Have I done something wrong here.

Now, I want lambdas to be positive for stability, right. I want lambda square to be positive. If this

is > 0, then we have stability for the steady state. Why, because this guy is positive where all the

other fellows are positive. The first one is positive, so when I take 4 pi square. If D pi square/L

square-a  is  positive,  then  D4  pi  square/L square-a  is  positive,  9  pi  square/L square*D-a  is

positive and so on and so forth, okay, because I was increasing this guy the positive fellow.

This is of course the positive domain, diffusion coefficient number is positive, okay. So, this guy

is positive and it  keeps on increasing.  Then, we have stability  for the study. Since for all  n,

lambda n square is > 0, okay, which means D>L square a/pi square and that is the threshold

value, that is the critical value of the diffusion coefficient. If it was for a given slab, for a given

reaction which is decided by the rate constant a, for a given reaction which decides a, for a given

slab which decides what the thickness is L,  geometry is fixed,  kinetic  is fixed and diffusion

coefficient is only other parameter.



If the diffusion coefficient is greater than this number, okay, then you have a stable solution for

uss=0 and that is basically what we said earlier. Remember if the diffusion coefficient is very

large,  then you would have any concentration variation which is present in the slab will get

smeared out because diffusion will flatten it, because that is what diffusion does. If you have a

room where there is concentration gradient and you just leave it, diffusion is going to make it all

equal, okay.

If the diffusion is greater than this critical value, you have a stable steady state. If the diffusion

coefficient is less than this critical value, then this guy is going to be negative. These guys we do

not (()) (25:16). These guys could be positive,  negative.  The first guy to become negative is

going to be this. The first lambda n square which becomes negative will correspond to n=1. This

is the first guy; all these guys will be positive.

So, this guy will become negative first, then this guy will become negative as you keep lowering

D, okay. So, the first guy to become negative will be this guy. If this becomes negative, then

remember the solution is going to grow exponentially, okay. So, that is basically the onset of

instability which means uss=0 is not going to be observed if the diffusion coefficient is lower

than this value.

If  the  diffusion  coefficient  is  less,  you  will  have  a  non-zero  solution,  you  will  have  some

function. You get some idea about how that function is by looking at the corresponding value of

Eigen function here, sin n pi x/L. Sin n pi x/L tells you how the spatial variation is going to be of

the non-zero solution. So, the non-zero solution that you are going to get is going to be of the

form corresponding to n=1 is going to be of the form sin pi x/L. 

It is going to go to 0 as the 2 ends and it is going to have one kind of hump in the middle, okay.

So, that is basically what the information is which is present in the Eigen function.
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So, now I am just going to write this thing down. So, if D>L square a/pi square, diffusion is fast

that means concentration get smeared out and we have a uniform solution which can be observed

and that is stable, okay. If D>L square a/pi square, then all the lambda n square>0 and therefore

the solution is stable. When, D<L square a/pi square, slightly less than, okay. I should say is

equal to L square a/pi square-epsilon where epsilon is positive and small. So, slightly less than

this, then what happens, only lambda 1 square is negative.

All other lambda n square, that is for n=2 to infinitely are positive, okay. When slightly less, only

lambda 1 square will be negative. Lambda 2 square is multiplied by 4, so that guy will still be

positive, all others are positive. So, what that means is supposing you have a disturbance and you

resolve it in terms of sin pi x/L, sin 2 pi x/L, sin 4 pi x/L, the thing which is going to grow is the

one corresponding to sin pi x/L, corresponding to n=1, that is the only mode which is going to

grow.

The modes corresponding to n=2, 3, 4, 5, they are going to decay. As a result, what we are going

to observe in your system is going to be the solution which corresponds to sin pi x/L, okay. So,

that is the insight which you are getting.
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The solution observed as t tends to infinity when D is slightly < a L square/pi square will have a

spatial dependency of the form sin pi x/L. Because only corresponding to n=1 is going to grow,

okay. Since only  n=1 grows,  all  other  n's  decay, okay. So,  what  this  means  is  you will  get

something like solution for you which has got some kind of non-zero value inside, may be the

single maxima, okay. So, I think this is just to illustrate to you that you have a critical value.

So, there are 2 processes which are taking place; one is a reaction process and one is a diffusion

process, okay. If the diffusion process is slow, if the diffusion coefficient is very low, then you

will  have  a  non-zero  solution,  but  if  the  diffusion  is  very  fast,  then  you  have  a  spatial

homogeneity and our solution is stable, okay, that is what physically you expect. But what the

theory, what the mathematics allows you to do is try to get you what this critical value is of the

diffusion coefficient, okay.
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So, what this means is if you actually have a plot. So, if we made a plot of, let us say, u versus D,

okay and let us say we are plotting u at the centre point, u at x=L/2 in a steady state solution. As

a function of D, what do I have. So, high values of D, I know that 0 is my solution which is

stable, what I am going to observe is 0, okay. So, this is the value of a solution that I am going to

observe. This is uss=0. So, uss=0 is along this line. My uss=0 means everywhere it is 0, therefore

at the centre point also it is going to be 0, okay.

So,  what  I  am doing here.  I  am trying  to  represent  how the steady state  depends upon the

parameter D. So, the point is uss=0 lies on this line and this is true for all D, all the values of

diffusion coefficient. Of course, we do not want to go to negative diffusion coefficient because

that does not make sense. The point I am trying to make here is this guy, this is let us say my

critical value. What is my critical value?

What is my critical value a L square/pi square and that is the number which I can calculate and I

am just putting a plot there. I am saying when D is less than this, I am not going to observe this,

whereas I will get some other non-zero value inside my (()) (34:18) slab and I want to represent

that non-zero value. So, I am just taking the value at a particular point. So, let us say it is going

to be positive value, it is going to be some non-zero value which may be keep on increasing.

So, as I  keep decreasing the diffusion coefficient,  the magnitude  of the concentration  at  the



centre of the pallet is going to keep on increasing. The farther I go away from this, the more is

going to be the value at the centre. So, what we normally do to represent this kind of pictures, we

want to represent the stability information also on this kind of a picture, okay. So, the way this is

classically done is this.

This is just to tell that whenever I have a solid line, that represents a stable steady state solution.

When I have a dash line, I have an unstable steady state solution. So, this is a stable steady state,

okay. This is an unstable steady state, okay. So, when D is sufficiently large, I get the stable

steady  stable.  I  can  actually  observe  it  experimentally.  But  if  you  keep  on  decreasing  the

diffusion coefficient,  calculation tells  you that the steady state is unstable,  now what does it

mean.

Whether it means that catheter is going to vaporise or does it means something else is going to

happen. Nothing crazy like that is going to happen, right. So, what is going to happen is we are

going to have a non-zero solution,  that means this  non-zero solution now is going to be the

steady solution because that is what we are going to actually observe experimentally. So, that is

reason I have drawn this by solid line. This is a non-zero stable solution.

I am telling you that this particular branch which I am getting is another solution, okay and if

you want we can calculate the other solution by doing a finite difference scheme for the partial

differential  equation  or  for  the  OD equation  you can  just  solve  it  by using some numerical

method, because it is a non-linear equation and you can get this branch, but this is also a steady

solution but this will be observed only when the diffusion coefficient is sufficiently low.

If the diffusion coefficient is sufficiently large, this guy will not exist. This guy will collapse to

u=0. So, this kind of a diagram where I am trying to represent the behaviour of a particular

system or a solution versus a parameter is called a bifurcation diagram, okay. What I have drawn

here is actually a bifurcation diagram. So, this is bifurcation diagram, okay.
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What  does  a  bifurcation  diagram  do?  This  diagram  depicts  how  a  state  or  a  solution

changes with a parameter and the stability information is also captured, and I am going to redraw

that thing which I had drawn earlier and this is D=L square a/pi. This particular point where you

have a change from one branch to another is called the bifurcation point. So, the bifurcation point

is a point where a new solution branch is emerging.

So, I have this steady state solution which always exists, okay because you will put uss=0, it

satisfies the equation always, no matter for all values of a, D and L. You, however, want to know

if you can experimentally actually observe that steady state and that is where the question of

stability comes in. Then, you do the linear stability analysis and then it tells you only if diffusion

coefficient is sufficiently large more than this critical  value, you will actually experimentally

observe and this has been shown by a solid line.

For lower values of diffusion coefficient, I have this dash line. But what happens, I mean when

diffusion coefficient is low, clearly there has to be some kind of reaction going on, something has

to be happening in the pallet, right. So, there has to be some other solution which is going to be

present in the system and that other solution is going to be of the form sin pi x/L and that is the

linear stability analysis tells you.

So, you get a non-zero value for the concentration inside the pallet and this non-zero value I am



just depicting in the form of this kind of parabola. Physically, I expect that farther I go away, the

more is going to be the amplitude, correct. As I come closer, it should collapse to 0. So, as I go

away, it should be more. So, I am drawing it in form of this kind of a parabola to tell you that this

is the kind of a parabolic dependency this solution has, okay. 

So, that is basically it as far as this particular problem is concerned, okay. I do not know if I have

jumped too fast when I wrote down this Eigenvalue thing, but you can solve that linear equation

for X in different ways, you will get the same conclusion, okay. If we get a different conclusion,

then what you have done is wrong. If we came to conclusion, then what you have done is okay.

So, what we have seen is how varying a parameter, of course experimentally you cannot really be

very diffusion coefficient that is a very difficult parameter for you to vary. The only way you can

vary a diffusion coefficient is by either making the ports bigger or by changing the gas, but this is

just to illustrate the concept. But maybe what we can do is think varying the length of the slab,

okay. So, if the length is going to be sufficiently low, you will have spatially uniform solution,

because the distance to which it has to diffuse is lower. 

Thickness of the slab is very large, that means the diffusion resistance is high. So, you can just

invert the problem and then say talk in terms of the thickness of the slab for which you want to

get  a  uniform solution.  So,  this  may have  some implication,  especially  if  you have  a  non-

isothermal reactor where you may want to keep the temperature uniform for example, because

you may not want to have the temperature go too high inside the catalyst, okay.

For other reasons, like may be undesired side reactions are taking place but the essential idea is

when you do a  linear  (())  (42:01)  analysis,  what  you can do is  you can  find  these  kind of

transition points where a solution becomes unstable, a new solution is emerging and this will

correspond to some basic change in the physics of the process.

Something which was dominating, diffusion which was faster has now become slower and that

has basically what has caused and it is the relative rate of diffusion and reaction rate that we

always have to look at,  okay. So, we will stop with this for now and we will  move on to a



problem in fluid mechanics which is again going to be a partial differential equation but with

system of equations and then we will solve and that particular problem that we will be looking at

is the problem of natural conviction which is called the (()) (42:52) problem, that we will have

only one fluid but it will have 2 solid walls and therefore it be part of the multiphase flow course,

right and then we will have actual 2 phase 2 liquids, okay.


