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So welcome to this  lecture  on multiphase  flows.  We saw some introductory  concepts  about

stability analysis in the last class. If Jason spoke about 2-dimensional system and he took an

example and he just worked out how you go about calculating the stability  of a system and

especially if there is a parameter working in the system, then that parameter would be something

which you can control as an experimentalist.

And what you want to do is, you want to find out how the stability of a system changes as you

vary that parameter. So that parameter could be flow rate, it could be temperature, it could be

concentration, okay. So like it was mentioned in the last class, what we really have to do as far as

finding stability of a system, I mean, it is decided by the response to perturbations, response to

disturbances, right.
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This is defined on the basis of the response to disturbances. The idea is if we give a disturbance

and if a system deviates from the steady-state, you say it is unstable. If it comes back to a steady-

state, you say it is stable, okay. So if the system comes back to the steady-state, the state is stable,



else it is unstable.  So I just want to emphasis again when I am talking about stability, I am

talking about stability of a state, okay.

Now this  is  what  you understand in  English  what  we want  to  do  is  we want  to  develop a

mathematical framework and what we got is some idea about the mathematical framework in the

context of system of 2 variables which are dependent only on time but not on space. So just to

keep the mathematics simple, so the example that was illustrated in the last class was that of 2

ordinary differential equations.

So you need the time dependency because whenever you are talking about stability, you are

talking about response with respect to time. So you always are talking about and unstable or an

unsteady-state system, okay and therefore,  you need the time dependency to keep the maths

simple, we made it well stirred and then you will neglect every spatial variations. So the basic

idea, so whenever you want to find out the stability of a system, what are the steps you need.

The  steps  to  find  stability  is  first  write  the  governing  equations.  This  could  be  continuity

equation,  momentum conservation of mass,  whatever  it  is,  we are not going to describe the

system, okay. Then once you have the governing equations, what is the next thing you have to

do. The next thing I have to do is find the steady-state, okay and this would be dependent upon

the problem you have considered in the first step.

Second thing is find the steady-state, okay because it is the stability of the steady-state which we

are interested in. So we will find the steady-state whose stability you are talking about and then

what do we do? We spoke about disturbances being given. So what we want to do is we want to

give disturbances to the steady-state, okay and what we do is we impose small, when I say small,

I mean infinitesimal, disturbances and here is where the order of epsilon comes in.

So these are basically of order epsilon, very small disturbances and that is the connection which I

want you to make with the perturbation series, thing that you have seen earlier when you are

trying to actually do things that are order epsilon, you will be neglecting higher-order terms,

okay.
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So what we want to do is we want to impose small disturbances and what is basically allows me

to do is this order epsilon disturbance allows the linearization of the governing equations. So the

original equations will typically be nonlinear, okay and since you are talking only about small

disturbances, what you will be doing is linearization, that is something which you also saw. You

have begun with a nonlinear system.

And you linearized it because you are giving only small disturbances, rather what you do is, you

do a Taylor series expansion and you need only the first order term. You do not go beyond the

first-order term. You do not take higher-order terms. Rather higher-order terms will be nonlinear

and then we look at  the growth rate of the disturbances.  Now growth rate, the disturbances,

growth rate, growth or decay rate is given is exponential in time.

Derivative  of  the  form  e  power  lambda  t  and  if  lambda  and  since  lambda  will  be  some

eigenvalue of some linear operator which you will see. Lambda will turn out to be something

like an eigenvalue. If the real part of lambda is negative, then it is going to decay and you have a

stable system. If the real part of lambda is positive, it is going to grow, okay. So basically what

this means is, the lambdas will be say the eigenvalues of a linear operator if the real part of

lambda is  negative,  the steady-state  is  stable  and if  the real  part  of lambda is  positive,  it  is

unstable.



There  is  just  one  subtle  thing  which  I  want  to  mention  here  that  when you are  doing this

calculation, if it turns out that the real part of lambda is positive that means even when you give a

small disturbance, it is unstable. So when you give any disturbance, the last disturbance, it will

be unstable.

So if the real part of lambda is > 0, you can definitely conclude that the system is unstable, okay

for all disturbances but if the real part of lambda is < 0, you only know where it is stable for

small disturbances but somehow you give the big disturbance, it could be unstable, okay. So you

have to be careful here. So whatever I am doing here is in the context of small disturbances,

okay.
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So real part of lambda being > 0 is sufficient to guarantee instability while real part of lambda is

< 0 is necessary to have stability, that is to say you can have, the condition can be a necessary

condition or sufficient condition for something to happen. I am just trying to tell you that real

part of lambda is > 0 is sufficient. If it is satisfied, your guarantee is unstable, that is enough, you

do not have to do anything else in life.

If this is < 0, you only know that the necessary condition has been satisfied. It is now assuring

you that it will be unstable because of this thing of small disturbance. So whatever stability we



are going to be doing is actually going to be based on those linearized analysis. So whatever we

are going to be doing in this course is going to be based on those linearized analysis.

What  this  means  is  these  are  what  are  called  local  stability  conditions,  okay. That  is  only

restricted to small disturbances, okay. So the stability analyses we will see in this class is based

on linearization and hence are local in nature as opposed to, what are the other one? Global,

okay. So whatever stability we are talking about is the local stability  condition or linearized

stability condition, okay.

So the analysis is called linearized stability analysis. So it turns out these eigenvalues which are

going  to  basically  distract  stability,  they  are  going  to  be  dependent  upon  your  operating

conditions, your flow rate or your temperature or your this thing concentration and as you vary

the parameter, these eigenvalues can actually change from having a negative real part or positive

real part.

The growth rate, I want to use the more general term, the growth rate, which basically tells you

how disturbances at  a particular  point change of time, okay, they can change from decay to

growth and that is the thing I get interested in. We are trying to find out those critical values

when that is going to be a change in the behaviour of the system, okay. So that is basically, this is

the mathematical framework.

We spoke something in English, now we are trying to put things in mathematical framework. So

given any problem, you can actually work and proceed and address the question of finding the

stability, okay because that is the advantage of doing mathematics. You can apply to any system.

So it helps you generalize things, okay.

So what we will do today is work on a particular problem which is basically going to take you to

a partial  differential  equation but it  is not a flow problem, okay and then we will do a flow

problem later on because normally when you do a flow problem in a stability, it is more than 1

equation, so we will just go to slowly adopt the complexity.
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So I  am going to  talk  about  stability  in  a  reaction  diffusion  system,  okay. So it  belongs to

mechanical  engineering  department  to  have  a  chemical  engineering  example  and one of  the

reasons why I am choosing this example is because I only have to deal with 1 variable either a

concentration or temperature. So in this case, it is the concentration. See the catalysts particles

which sustain chemical reactions.

And most of you know that catalyst exist, we have done this in our course in chemistry what it

does is it  basically provides an alternative path for the reaction to take place and makes the

reaction go faster, okay. So but the thing is the catalyst is usually deposited on a surface and

provides the site for a reaction to take place, okay. Now in order for you to maximise the surface

area available for the reaction to occur, what is normally done is there are these catalysts are

usually very porous, okay.

So basically what I am saying is the catalyst are porous in nature and this is to maximise the

surface area available for reaction, okay. So we will keep life simple and rather than to talk about

a spherical particle, we will just say that the particle is a rectangular slab, okay. So imagine, just

for the sake of working with Cartesian in geometry, you can work with spherical coordinates. We

assume  1-dimensional  program,  because  I  just  want  to  illustrate  some  ideas  dimensional

problem.



You see my 1-dimensional system which means take a rectangular slab of thickness L in the x

direction and extending to infinity in the y and z directions, okay. So I am just extending my

infinity in other directions. So what this helps me do is keep my life simple, that is I am just

going to worry about variations in the x-direction and since I am talking about stability problem,

I want to worry about the time dependency as well, okay. 
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So now I am just going to draw the slab here. So this is porous, all kinds of pores all over the

place. Some random network of pores will be there and this is a porous solid. So the transport of

gas assuming this is a gaseous reaction which takes place on a solid surface, transport of gas

inside the solid is going to be only by diffusion, okay. There is not going to be any great velocity

inside this pore.

So what I am trying to say here is that the only flux which is going to transport this pieces inside

the slab is the diffusion process, okay. We are also going to keep life simple and say that there is

no exothermicity and so we are talking about the temperature being constant, okay. So point is

isothermal  reaction,  okay, if  we have a  negligible  heat  of  reaction  and diffusion is  the only

mechanism for transport of mass, okay.

Now you can write down the governing equations in many different ways but we will just do a

shortcut in the sense you know how a species balance looks, okay. You have the connective term,



you have the diffusive term, you have the accumulation term and you have the generation term.

So  we  will  just  simplify  things  here.  We just  say  that  there  is  no  convection,  so  only  the

accumulation term.

The species balance can be written as the partial derivative of u=…, okay. In some sense, this is

way of transport theorem for you. I am doing a species balance here. I am doing it for a small

infinitesimal controlled volume. What is this term represent? This term represents the, what is

this? The accumulation term, okay. This is flux, okay, because of only diffusion. Convection I am

saying is not present.

When we did the Navier-Stokes equation, you have the convective term on the left-hand side. We

only had the viscous transport here. So this is your diffusive flux. So basically if you have your

overall species balance which you must have done in one of your earlier courses, you will write

it down and you drop of terms which do not exist, then you will get this equation, that is the idea.

I am dropping up all the velocity terms that was off. I have diffusion only in the x direction. The

y and z direction, I have taken it to be infinity, so I do not worry about it and this here I am just

saying is my reaction kinetics. So this kind of reaction kinetics would actually arise when you

have an autocatalytic reaction, okay. So this is you have used things like first order reactions,

second order.

If it had been the first order reaction, you would had just u or something like that but since it is

an  upper  catalytic  reaction  in  this  u*1-u.  So  u  is  basically  representing  something  like  a

concentration, okay. So here u is concentration of a species. Clearly this is going to be subject to

some boundary conditions and the boundary conditions are taken as u=0 at x=0 and L.
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So the thickness of the slab is L, okay. The thickness of the slab is L and both the ends, I will just

say u is 0. So that is my governing equation. So what I did is I just did my first step which is

write  out  the  governing  equation  for  the  system.  So  I  have  a  catalytic  reaction  which  is

isothermal  taking  place  in  a  slab.  I  do  not  have  any  temperature,  so  isothermal,  no  energy

balance.

I only need to worry about how the concentration is changing, okay and I need to forget about

velocity because there is no convection inside the porous catalyst, okay. It is very negligible. So

now the next thing is we need to find the steady-state, right. So for the steady-state, what do you

do? Steady-state means you need to put uss  implies d/dt of uss is 0 which means…, okay subject

to…

So since I am looking at a steady-state, the time derivative goes off and my steady-state has to

satisfy that equation. So one of the reasons why we actually chose this problem, so one steady-

state which immediately pops out is one can be spatially uniform. Supposing you do not have

any variation in x direction. Suppose you do not have any variation in the x direction, then this

second derivative is going to be 0.

So it is the spatially  uniform state or homogenous state where the concentration everywhere

inside my pallet is equal. So what kind of a spatially homogenous solution can this system have?



Clearly if this is 0, then uss could be 0 or it could be 1, okay. So if we look for a spatially

homogenous solution, okay, then d square uss/dx square=0 will implies uss*1-uss=0 or uss=0 or

1 but then your solution should also satisfy the boundary conditions, okay.

So this guy uss=0 satisfies the boundary conditions where as uss=1 does not satisfy the boundary

conditions. So uss=1 is not a solution. The only thing that is possible is uss=0 is the only solution

possible.  You understand? So uss=0 is  the only spatially  homogenous solution,  okay. So my

question now is when would the concentration inside my catalyst be spatially uniform, okay? I

mean this is a possible solution.

So now what are the different processes which are actually taking place inside your system. One

is  you have the diffusive process and one is  you have the reaction  process,  okay. So if  the

diffusion  is  very  very  fast,  diffusion  remember  works  to  make  things  spatially  uniform.  So

basically the diffusion is very very fast. Your concentration is going to become uniform. Whereas

if the diffusion is slow, you are going to have, you can see the concentration gradient.

But this is just English, diffusion being fast and diffusion being small. What you want to do is so

in relation to the rate of reaction, I expect that if the diffusion is larger than a critical value, I

expect that u=0 is going to be, uss=0 is going to be something which you can observe because

even if there was some disturbance, diffusion is going to make it even. Whereas if there is a

disturbance and if diffusion is very slow, there will be a non-uniform solution, okay.

So there will be a variation of concentration inside the catalyst pallet. So that is the question

which you are trying to answer. We are trying to find out whether there is some kind of, what is

the critical value quantitatively, can I quantify this? Thus where you are able to quantify in terms

of the Reynold's number, 2100, okay, can I quantify the value of those diffusion coefficient in

some kind of a dimensionless group which will tell me when is this stable, when is this unstable.

So that is the question, okay and the reason why I talked about diffusion is because at the end of

the day, what all mathematics tells us has to be in line with whatever our physics tells us. It is not

that they are 2 completely different things. As engineers, we have to put mathematics and physics



together, okay. So what I have give you is a possible solution which is spatially homogenous

which uss=0, it satisfies the differential equation, satisfies the boundary condition, okay.

And I am telling you that look this is a spatially homogenous solution. I expect the solution to be

stable when diffusion is very fast as compared to reaction, okay. But it is not a critical threshold

value which decides what is fast and what is slow and that is what mathematics will tell us, okay

and that is what we are going to find out by doing the linear stability analysis. So now what we

are going to do is, we are going to assume, okay. So let me write this down.
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If D is large, I am going to put this in the inverted commas because I want to compare that with

something else which has the same units (()) (30:23) okay. D is large, then disturbances in the

concentration gets smeared out and we can expect spatially uniform solution to be stable, okay.

When D is large, means what? D is larger. So what is the critical threshold of D above which we

have stability, that is the question, okay.

And of course one should not talk in terms of D because the diffusion coefficient will depend

upon your slab and all that. It is good to work in dimensional coordinates, okay. It is preferable

to work with dimensionless groups for having greater validity, that is what I want. Otherwise you

will say diffusion specific to a particular system rather than in a dimensionless group, then it

becomes more general, okay.



So let us go the next step. So this is the first step, write out the governing equation, I did not

derive  it  (())  (32:47)  I  think  we  just  wrote  out  the  steady-state.  Now  we  have  to  do  the

linearization, right. So I just want to mention, this corresponds to x=0 here and x=L here where L

was my thickness on the slab.
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So  what  we  are  going  to  do  is  look  at  imposing  small  disturbances  and  what  were  these

disturbances measure? They measure the deviation from the steady-state, okay. The disturbance

basically tells you how far the system is away from the steady-state. Your steady-state is uss=0.

So now I am going to, this is my disturbance variable, I am just putting the ~ on top to signify it

is a disturbance and this tells me how far is u from the steady-state, okay.

U is the actual concentration and uss is the steady-state concentration. In this case of course uss

is allowed to be 0, well you could have a problem where uss is not 0, okay. So I mean just to

keep things general, I am writing it like this. So I have u~ written as u-uss and what I am going

to ask you remember is if this is of order epsilon, this is very small, okay. So if it is order epsilon,

I may want to specify that it is of order epsilon by writing it as, to explicitly show this I can write

this as epsilon*u~=u-uss where now u~ will be of order 1 because epsilon u~ is of order epsilon,

okay.



So this is to explicitly show that this is of order epsilon. I just want to put things in perspective to

what you have already done in perturbation analysis. So now it is like saying I am taking u as

uss+epsilon u1, sorry u~, okay. This is just to make you relate what you did in your regular

perturbation series, you sought u as uss+epsilon u~ etc., okay. In the absence of disturbances, it is

uss.

Now epsilon tells you the mild of the disturbance, there epsilon told you something about the

parameter  value,  okay.  So  we  write  it  like  this.  Now  I  just  have  to  substitute  this  in  my

differential equation, okay. I need to substitute this particular form in my differential equation

and since I am considering only small deviations, I am going to linearize the term.

The only term which was nonlinear is my reaction term which has quadratic dependency u*1/u,

okay. So let me just go back and write those equations here equals, this is my equation, it is a

squared, maybe I should just write it here itself, okay, wait a second. That is u, and I am going to

substitute for u this expression uss+epsilon u~, okay.
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Substitute for u, in terms of u~, what you get d/dt of uss+u~*epsilon=d*d square uss+epsilon

u~/dx square+a*… multiplied by 1-…, okay. This is multiplying that. What I want to do is group

all the terms together of order epsilon to the power 0 and of order epsilon. Order epsilon to the

power 0 will be my base state, my steady-state solution. Order epsilon to the power 1 will be my



linearized solution because I am going to basically take only the linear terms, okay.

Order epsilon to the power 0 gives a steady-state and should give the steady-state. Order epsilon

to the power 1 should give the linearized equations, okay. So let us just do that. So I have d at

order epsilon to the power 0, d/dt of uss=d d square uss/dx square+a*uss*1-uss. That is what I

get. This multiplied by this will give me epsilon term, this multiplied by this gives me the 0th

order term, okay.

This is not x, okay and this is multiplied by this will give me order epsilon. So this is my steady-

state solution about which I am doing the linearization, okay. Because the steady-states goes out

to 0 and the solution we are looking at is uss=0 which satisfies the boundary conditions. What

about the order epsilon to the power 1 term? I get d/dt of u~=d/d square/dx square of u~+, now I

have a uss*u~+a u~*1-uss, okay.

When I have this multiplying this, I have one term and this multiplying this, I have the other

term. The other term is of order epsilon squared, so I neglected. Clearly now what I am going to

do is use the information which I already have about uss, that is why you did your perturbation

series analysis. You want to use this information about the steady-state being 0 and for steady-

state=0, and then I will find, is that okay?

“Professor - student conversation starts” (()) (40:40) yes, -, what is this? Second term is. This

is - here. The second term should be (()) (40:54) a u~*1-uss, it looks okay to me. Second term.

This one? Yes, yes. Second term should be negative, you are right. This should be negative, yes,

you are right, that is negative. Yes. “Professor - student conversation ends”

Now put uss=0, okay and your linearized equation is d/dt of u~=d*d square u~/dx squared+a u~,

that is your equation at order epsilon to the power 1 and what are the boundary conditions? The

boundary conditions are going to be u is going to satisfy 0 0. U steady-state satisfies 0 0, so u~

also have to satisfy 0 0 at the boundary, okay and u~=0 at x=0, L, okay. So this comes for the

boundary condition, you have to put this perturbation again in the boundary condition, you get

this.



What I want to emphasize here is that whenever, that is the linear equation for u because that is

what we have done. We essentially done a linearization. You could have done those linearization

using Jacobian which is what was discussed last time. You will get the same result, okay. You

should do that and verify for yourself.
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So at order epsilon to the power 1, the equation is linear and what do I get? A u~ and u~=0 at

x=0, L and not only is a linear, it  is also homogenous and I think if  you do a linearization,

whenever you are working out a problem, after doing the linearization and after looking at things

at order epsilon to the power 1, if you find that your equation is not linear, then something is

wrong, what you got is wrong.

You will find that there is a non-homogeneity, that means something is wrong. The point I am

trying to make here is that the linearized equation should always admit 0 as a solution, okay. So

the linearized equation must admit 0 as a solution always, so that is a simple check you can

make. Just because it admits 0 as a solution, does not mean you have it right but if it does not

admit, it is wrong, okay.

So I think that is the only thing you can do. So what I am trying to tell you is that this is linear

and homogenous and now once I started off with the nonlinear problem, I got a steady-state, I



have done a linearization and now as a linear equation, I am kind of comfortable, I am in my

comfort zone because I know how to solve this equation using some of the things that you people

have learnt in your class like separation of variables, okay.

So now I have a linear equation subject to homogenous, my boundary conditions also have to be

homogenous. Everything has to be homogenous, only then I can have this. This is something like

an eigenvalue problem. If you remember ax=lambda x. x=0 is always a solution. The sum values

of lambda for which we have non-zero solution plus the kind of things we are looking at here, so

0 as a solution must always satisfy this for no matter what the parameters are and what we are

trying to find out is, because it is linear, since it is linear, we can solve this analytically.

So for example above is a linear equation, it is a partial differential equation. So this is one level

of complexity more than what you did yesterday. Yesterday you did not have those x and y term.

You only have the time derivative term after linearization. We get 2 equations. Today, I have only

1 equation, is partial differential.  When we start doing fluid flow problems, it is going to be

partial differential and more than 1 variable, okay.

And by the way this is also a very relevant of multiphase flow because I am talking about a gas

in a solid. So there are 2 phases, right. This is solid and there is a gas. So do not ask me how is

this relevant to fluid flow. It is definitely, there is a fluid flowing and there is a solid particle,

okay. Now this is a very relevant to fluid flow. I was beginning to justify with myself that this is

relevant  for this  course,  I  need this,  okay. So now how do you go about solving this? Who

remembers this calculus course on partial differential equations?
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We will solve right now using separation of variables. So this u is a function of x and t and what

I am going to do is, I am going to write seek u is a function of x and t as X of x*T of t, okay,

provided the 2 functions, one which depends only on x and the other which depends only on

time. What we will do is, what we normally do is, you substitute this in that partial differential

equation and get the x dependency, get the time dependency.

And then you will be in the position to understand by looking at the growth rate, the exponential

term which I spoke about earlier, whether the thing is stable or unstable, right. So that is what we

will do. Substitute this in the, actually this will be u~, u~ equation and what do you get? X of

x*T dash=D*X double dash of x*T+a*X of x*T of t,  okay. What we do now is,  we divide

throughout by X, multiply it by T, okay.

Divide by XT and what do you get? T dash/T=D*X double prime+aX/X, okay. It is just divided

by XT and that is how I get and so the classical argument that this left-hand side is a function

only of time, the right-hand side is a function only of X, so the only way these guys can be equal

is that this is equal to a constant.

And what this basically tells me is I can solve for this ordinary differential equation which is first

order in time. I can solve for this ordinary differential equation for the second order in space and

then hope to proceed to getting my solution. So we will do this tomorrow and we will wrap up



this problem, okay.


