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Introduction to stability of dynamical systems: ODEs

Good morning everyone and welcome to today's lecture. So today we will be looking at short

introduction to the stability of dynamical systems.
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So in the previous lectures so far in this course, we have seen how to formulate problems in fluid

mechanics including 2-face flows and how to obtain a solution for the case of a steady-state in

most of the problems. Ultimately we are building up to a position where we want to be able to

study some complex 2-face flows which have time dynamics. So how it fits in with the previous

part of the course is that so far we have seen how to find one particular solution under certain

assumptions to the Navier-Stokes Equations.

But the problem is that that solution is not always stable which is what we discussed at the end of

the previous lecture that often there will be multiple solutions to the Navier-Stokes equations

because  they  are  highly  non-linear  and what  will  happen physically  is  that  for  some set  of

parameter and Reynold's numbers and other parameters, you will have one solution stable and

that is what you will see in experiment.



But on the other set of conditions when you increase the Reynold's number or in terms of an

experimentary parameter if you turn up the flow rate, at some stage you will have a transition to

a new type of behaviour and specially you will see a new kind of pattern. So what has happened

is a solution has become unstable and a new solution has become stable. So to understand these

transitions, we can draw on the theory of diameter systems and the stability of these different

steady states.

So in this class, I will take a very simple second-order 2-dimensional dynamical system and we

will  track,  go  through  how  we  can  understand  the  stability  of  a  steady-state  and  how  the

transition  happens.  So  before  I  start,  how  many  of  you  all  are  familiar  with  the  idea  of

linearization and then stability of systems in ODE's. You can have a show of hands. So I can

gauze where to pitch select, alright.

So for the audience watching this lecture also, this is the basics of what we were doing course

like process control as well and I will just focus on the simple ideas here. For those of you all

who already know some of this what I will do is try to give it a spin that allows me to generalise

what I am going to do today to the partial differential equation setting which is what we are

really interested in this course.

So let us begin. Let us consider very simple system. So I have 2 variables x1 and x2 which are

dependent on time and system is governed by 2 equations that tell me what the time dynamics

are going to be and in general this first derivative will be some function, F1 of the 2 dependent

variables and since the right-hand side does not have time in it, it tells us that the system is,

basically the derivatives are time independent or how the system evolves depends on the x1 and

x2, its current state.

I can rewrite these 2 ODE's in a more condensed form where the dot represents the derivative. F

is the vector function and this capital X is a vector of the 2 quantities x1 and x2 and capital F

is… So this is a standard representation of a system in a condensed notation. So what I will try to

do today is layout the steps that one would need to follow to analyse the system for steady-states



and stability.
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So the very first step is to identify the steady-states and generally it will be plural for non-linear

systems. So in order to identify the steady-state, what we need to do is we are looking for x1 and

x2 values of the system such that the left-hand side derivatives go to 0 or there is no evolution in

time. So these states are simply given by setting x1.. So x1 star, x2 star are the steady-states of

the system which must satisfy these 2 equations because only then my evolution in time will be 0

or rather time independent steady-state.

Again in vectorial form, I can write this as…, right. So this first step is what we have already

covered in the course so far. So if this were then looking at the Navier-Stokes equations, we have

already seen how to calculate steady-states for some condition and generally the idea will be that

this x star, this steady-state is something that is quite simple. I mean it is an obvious steady-state

solution of the problem for some parameter values.

So for example it could be a situation where there is no flow or for example Poiseuille flow in a

pipe, just a simple Poiseuille flow solutions at steady-state and then we want to understand how

that solution undergoes a transition. So in the ultimately case transition to turbulence in some

simpler cases that we are looking at, this course maybe some convection cells will set in and

different features may arise.



So this will be a simple base state that we are going to start with and now we want to see whether

that x star is stable or not. So that brings us to step 2, here. So step 2 is called linearization and

the idea here is that because you want to see whether the system is stable around x1 star and x2

star, we give small perturbations to the current position and see whether the system returns back

to  the  original  steady-state  or  whether  it  deviates  off  and  this  ties  in  very  well  with  the

perturbation theory.

We have just completed where we have seen how to derive equations  when you have small

changes epsilon order changes. So that is what we will do here. So the variable x1 which is my

dependent  variable,  I  am going to  give it  a  small  perturbation  about  x1 star. So that  x1=x1

star+epsilon  which  has  the  amplitude  of  my  perturbation*x1~.  So  here  ~  represents  the

perturbation that I am giving but this x1~ is bounded by 1 so that its magnitude is an epsilon. So

this entire quantity is very small compared to x1 star.

This quantity is the small quantity. Similar I can do that for x2. So x1~, x2~ tells me in this 2-D

case, the direction in which I am pushing the system or what kind of deviation I am going to give

to the system. An epsilon just reminds me that that has to be a small deviation because I am

looking at small perturbations. So again I can write this in vectorial form as x, which was the

vector of my 2 dependent variables, as the steady-state, +epsilon*x~, where x~ is the deviation

variables.

So this is the expansion and now like any perturbations, calculation that we have done, we need

to substitute  this into the originally  equations and then obtain simplify the equations for the

evolution  of  x1~  and  x2~  because  that  is  what  we  want  to  identify  with  stability.  We are

perturbations of this form and we want to see whether these, how these grow in time. So to be

explicit, I have x1 of t and x2 of t, they are both time dependent.

And for small deviations about the steady-state, this time dependence is simply going to be of

this  form. So we will  have the steady-state  part  and to the steady-state,  there is some time-

dependent deviation and the idea is to find out whether this time-dependent deviation is growing



in time or whether it is going to decay back down to 0 and give me my steady-state. So to do

that, we come back here and substitute it in these equations.
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So if  you put  it  into  the  left-hand side,  we will  get  simply  the derivatives  of  the deviation

variables to order epsilon naturally because these are of course time independent. Now coming to

the  right-hand  side,  here  F1  and  F2  is  any  general  function.  So  while  I  cannot  make  the

substitution mechanically, what I can do is use Taylor series and that is what we have been doing

in the course when we do not have simple functions.

So we can expand F1 as a Taylor series, so let me write it down here explicitly. So x1 is simply

x1 star which is some constant+epsilon x1~… So that is F1 and now if I expand it in the Taylor

series, about x1~ and x2~ because it is a 2-dimensional function. Then I will have the function

F1 at x1 star, the value of the function at the steady-state, +the deviation into the derivative of the

function with respect to x1, of course evaluated at x1 star x2 star.

Same thing for the variable x2 and I can write the same over here. So that is pretty clear. I just

used the Taylor series up to first order epsilon. So to be exact, I should add the fact that there will

be order of epsilon square terms which I have neglected to write down at the moment. So now

the first thing you can see is that the function value F1x1 star x2 star is naturally going to be 0

because that was how we got x1 star x2 star at the first place.



In other words, these 2 are steady-states. So naturally they will evaluate to 0 on the functions F1

and F2. So these guys are just knocked out and I mean that is by construction. It is not a miracle,

that  is  going to  happen every  time  naturally. So what  we are  left  with  if  you see is  just  a

linearized system, that is why it is called linearization. So the derivative of x1~, which is now the

growth of the deviation, is going to be related linearly to x1 because this is simply a constant

evaluated at the steady-state.

So this is a function, the derivative but we have to evaluate it at the steady-state. So it is constant

factor multiplying x1~. Now of course you will ask me that there is order of epsilon square terms

as well. So if I go to epsilon square, I will get high order corrections which will involve x1~

square and so on. But then we know from the perturbation theory that we have already looked at,

that since the left-hand side is order epsilon, so naturally we will equate it to the right-hand side

terms of order epsilon itself because these order epsilon square terms will be much smaller.

So if we look at it as a perturbation problem, we will just equate the coefficients of epsilon on

both sides and what will be left with, where again that dots represent derivatives, is simply, I will

just put the star here to indicate I am evaluating at steady-state. So that is what I get after I equate

terms toward epsilon. And now I can write this in my vectorized notation, then I will get the

growth of x~ is simply = a matrix which I will call J and use the double under bar to signify

matrix*x~ itself which is a classic first order linear algebraic system.

And this J is called a Jacobian matrix and it is simply given by the partial derivatives. So the

matrix J has got for 4 partial derivatives, all evaluated at the steady-state and the note that it is F1

in the row and F2 in the second row. Of course, have you ever forgot that you just have to come

back and rederive this which is quite straight forward. So ultimately what we have seen here, we

should not get too caught up in the formal notation. I want you to remember from the beginning

that we have some dynamical system.

This could for all you know be partial differential equations also on the right-hand side but the

point is, we found the steady-state and then we linearized about the steady-state by the basic idea



is  giving  small  perturbations.  Now  in  the  case  of  this  simple  2-D  system  though  small

perturbation procedure ultimately led to this very simple x.=Jx form.

This same form may not arise in an immediately obvious fashion when we are PDE's but the idea

will be the same, we will have to give small perturbations and we know how to deal with those

perturbations  using  perturbation  theory.  So  ultimately  we  will  land  up  in  some  linearized

description of the system. So that is the point about step 2.
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So moving on to step 3 and step 3 is where we now want to ask the question given my linearized

equation, how is x~ going to grow in time. So imagining that we have absolutely no clue how to

solve the system by any formal  rules,  what  we would do is  assume a solution  for  the time

dependence. So if you look back there, you can see the full matrix form and since it is linear, I

can assume that x~, which is a function of time, is going to be, I am sorry x1~, is going to be

some constant u1, it is a number like 2 3 -5, some number which I have yet to determine.

And the time dependence can grow as e to the power sigma t or exponential growth. The reason I

would do e to the power sigma t is quick note, that suppose I have a system dy/dt= say lambda,

sigma y, yes. This is your classic first order single equation ODE, right and what is the solution

with this problem? “Professor - student conversation starts” e to the power sigma. “Professor

- student conversation ends”



It is e to the power sigma t*the value at t=0. So it is just an exponential growth. So you can see

that the time dependence as e to the power sigma t. So in analogy to this, we are looking for a

similar solution when we have more than 1 equation and I am postulating beforehand that this

growth rate for all the variables that is your x1~ and x2~ have the same sigma. So right now let

us look at it like a hypothesis and let us proceed and then if things work out in the end, we can

look back and think about (()) (20:36).
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So right now I am saying that this has e to the power sigma t and so does x2, alright. So what I

have done now is made a statement about how the time dependence is going to be and what this

tells me now is that suppose my sigma is positive, then I will have this exponential term growing

unboundedly which means that  x1~ and x2~ will  both grow. So if  sigma is  positive,  I  will

naturally  have  an  unstable  system,  right  because  my initial  perturbations  here  x1~  x2~  are

growing.

So I give some small initial perturbation. That initial perturbation you will see here is just u1 and

u2, correct, in the form that I have shown if time t=0, the initial condition I just have u1 and u2.

So u1 and u2 represent that small perturbation I am giving. Now the question is, whether this

factor will grow? So if sigma is positive, that initial u1 and u2 is going to grow without bound if

sigma is positive and this  x1 and x2 of table very rapidly move away from the steady-state



because of these terms.

On the other hand, if sigma is negative, then e to the power sigma t dies off because sigma is

negative. So then the system will be stable because this portion will rapidly decay to 0 with time

and a return back to simply x` star and x2 star. So in this form of my perturbation, sigma is

crucial and that is why sigma is often called the growth rate. So typically again in these problem

that step 3, we look at the linearized equations.

And these equations as you will notice will be homogeneous which means that if I say x~=0, it

will satisfy the equation and that it has to happen because saying x~ is 0, basically is saying that I

am on the steady-state and I know that steady-state satisfies the original equations. So I will have

a linearized homogeneous system for the evolution of the disturbance variables and the next step

is always to assume a form e to the power sigma t for the growth where sigma is the growth rate.

So now for this particular system, we will see where this leads us. So if I substitute this again

into the equation that I have here, so let us look at the expanded notation and let us see what we

are going to get. So what will the right-hand side be? x1~ derivative is simply d/dt of this and e

to the power sigma t gives me back e to the power sigma t. So I will have u1, but with the sigma,

right and my right-hand side, this is of course a constant. I have x1~ which I will substitute from

here.

So I will get u1e to the power sigma t back, right. We will do the same thing for the second

equation and now you see that because the equations were linear, I have this e to the power

sigma t term common everywhere, right. So naturally I can knock that off. So what am I left

with. I am left with an equation for u1 and u2, which of course are unknown at this point, that is

one way of looking at it.

“Professor - student conversation starts” Is sigma (()) (25:20) that is what we are trying to

find. “Professor - student conversation ends” So this is what I have. So now if we again look

at this in terms of the matrix notation remembering that those 4 partial derivatives are J, I will

just have sigma*U, capital U, where capital U is, wait I will write that at the end. So sigma*U,



where capital U is the vector of u1 and u2, is simply the Jacobian matrix, *u itself, where here U

is u1 and u2, alright. 

So this process of assuming this form e to the power sigma t has led us to this equation in this

particular system. And now the question is how do we use this to evaluate sigma or what does

this tell us about sigma or what does it tells us about U. So suppose sigma is some random value,

may be 5, right. Then I need to find U such that 5U is the same as Jacobian times u. One sure

solution is if I take U=0, right. So U=0 will always solve the system, that is because it is the

homogeneous set of equations and saying U=0 means I have not given any disturbance.

If U is non-zero, this equation may not be solved. There is no guarantee that for any non-zero

values of U, I will have this equation satisfied but there could be some values of sigma such that

a non-zero value of U will satisfy this equation. So my objective here is to find those values of

sigma and those non-zero disturbances, such that this equation is satisfied and this is the classic

eigenvalue problem that we have solved in general dynamical systems theory.

This  is  what  an  eigenvalue  problem looks  like  where  you  have  a  homogeneous  system  of

equations which always has the 0 solution but there will be some parameter like sigma and in

this case, the growth rate it is. So there will be some values of the growth rate such that you will

have non-zero disturbances propagate into the system and that is why we want to solve. Now in

this particular 2-D system, it takes the simple matrix eigenvalue form which we can solve it the

standard theory we already know.

But in the PDE system, we will also reach the stage. We will have an eigenvalue problem to

solve and then we need to proceed with that solution either analytically or numerically. So that

brings us to the end of step 3 is the eigenvalue problem. So in this case, sigma is the eigenvalue

and the disturbance is the eigenvector.
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So that brings us to step 4. Step 4 is to solve the eigenvalue problem and determine the growth

rate  and  determine  the  disturbance,  right  and  how  do  we  solve  classic  matrix  eigenvalue

problem? We realise that this is equal to saying…, right. So this itself is a matrix and for this to

have non-zero solutions  U, this  matrix  has to  be singular which means that  the determinant

should be equal to 0.

So for a second-order system like the one we are looking at, this will lead me to a quadratic

equation and I will get 2 values of sigma. In general, this equation can be some polynomial nth

order. If my system is nth order, we have a partial differential equation, then this can be some

extremely complicated function, more complex than we can imagines sometimes but it is always

solvable.

If you cannot do it analytically, we can do it numerically but this is the equation, it is called the

characteristic equation. Equation that gives us, sorry, I do not know where lambda pop into my

head but it should be the identity matrix naturally. So this is the characteristic equation that gives

me the characteristic values or eigenvalues which in this case is simply the growth rate and you

will have many values of sigma in general.

For a 2-D system, you will get 2 growth rates. For a partial differential equation, you potentially

have an infinite number of sigmas or infinite number of growth rates. So what that means is that



there are various key directions in which you can disturb the system and if sigma is positive

along even one of those directions or if even one value of sigma from here is > 0, then the system

is unstable and the eigenvector corresponding to that eigenvalue sigma, the positive guy, will be

the direction along which the system will grow and that eigenvector will contain information of

the new pattern or the new state.

So this equation can usually be solved and we can obtain the values of sigma and once we know

sigma, we can come back here and calculate the eigenvector. Knowing sigma, we then calculate

U which is the eigenvector and that U will contain information. U contains the information of my

new state if sigma>0. So if sigma>0, the previous state has become unstable and this is the mass

to go somewhere.

So where it  is going to go, what will be the new pattern that I see will  that in some of the

information at least is there in U and we can get a lot of information if we do a slightly nonlinear

calculation  but  from  linear  calculations,  we  can  tell  if  it  is  stable  or  not  to  very  small

perturbations because that was the initial hypothesis, it has to be infinitely small. So only to those

step are perturbations we can tell whether the system is stable or unstable. 

So that was step 4 where we solved the eigenvalue problem and that will immediately tell us,

answer all  our  questions  about  stability. Are there  any questions  at  this  point?  “Professor -

student conversation starts” Yes. There will be multiple sigmas. So how are we going to look

upon this (()) (33:34). Yes, then you did the same thing that you do in the case of solving these

linear algebraic equations because they are linear, you will recognize that each of those sigma's

and each of those U's correspond to linearly independent solutions.

So then the general solution will be given by the sum of them. So because it is a second-order

system, you will have 2 solutions and you will have 2 different directions in which the system

can grow and in the general case, your actual growth will be some linear combination of the 2.

So I will write that down formally. “Professor - student conversation ends”

(Refer Slide Time: 34:17)



The question is that after solving this problem, I have a value of sigma 1 and a value of U1, right

and I have also calculated another sigma 2 and another U2. That is not a good idea. Let me call it

sigma  1,  2…  So  U  is  eigenvector  corresponding  to  sigma  1,  the  first  eigenvalue.  Second

eigenvalue has another eigenvector V and you will have only 2 for a 2-dimensional system and if

I have high-dimensional system, I will get more of these.

So then I can represent x1 of t for example as the value u1 that comes from here, e to the power

sigma 1t, right and multiplying with some constant alpha, some linear combination. Sorry…v1 or

in terms of my, this is a ~. So all this is some linear combination of the 2 fundamental solutions I

got  from the  eigenvalue  problem and you see  that  make sense because  it  is  a  second-order

system.

So I need 2, I mean, I can have 2 unknown constants because I have 2 initial conditions, one for

the initial value of x1 and for the initial value of x2. So there are 2 constants here which I can

determine from our initial condition. Now so then this is definitely a solution because if I put it

back in the equations, they will each satisfy the equation on each half. So the first part will be 0,

second part will be 0 independently and I will get a solution.

So a standard superposition of solutions. So this is why if sigma 1, if either of sigma 1 or sigma 2

are positive, it is unstable. So even if sigma 1 is negative, this part will go to 0 but this guy will



blow up if sigma 2 is positive. So for stability, I need all the sigma's to be negative and even if

one of them is positive, it will grow. So if everything else is reasonably clear at this point, what

we can do is look at a simple example of a 2-dimensional problem where we will get a feel for

the actual mechanics and see how it plays out in a real system.

So there are a lot of certainties that I have left out here, for examples what would happen if you

get sigma=0. So that would mean that my Jacobian matrix is, I mean it has a 0 eigenvalue, so

then  I  have  some  problems  I  cannot  calculate  the  eigenvector  and  the  eigenvector  can  be

anything basically. So in such systems you actually end up at a contradiction in the mechanics

because the fundamental theorem that lets me do this linearization fails if you have a steady-state

where you have a 0 eigenvalue.

And those points are very special  actually and that is usually what happens, the problematic

points are the ones that should be paid special attention to. So in such situations honestly this

theory completely fails. So if the sigma=0, I cannot tell what will the dynamics be, whether it

will be stable or unstable, I have absolutely no idea. So to find that out, we need to go to the next

order of epsilon.

So here we stopped at first order epsilon, we need to go to the epsilon square order to get more

information and the formal theory is called center manifold theory and we discussed more of

these higher order dynamics in the course that we do in the alternate semester which is steady-

state in dynamical systems. So next semester probably we will be having that course again. But

for our purpose in this course, we will be mainly wanting to identify the transition point.
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So sigma=0 is the transition point of the system, right. So we will be varying some parameter

like the Reynold's number and for small  Reynold's numbers say the sigma will  be negative,

system is stable. For higher Reynold's number, suddenly one of those sigma's in the calculation

will become positive. So that point where the 0 marks the transition and that is very important for

us because that will tell us a critical parameter values for which I am going to have a change in

my flow.

And how to investigate the dynamics over there, we need to go to high order in a perturbation.

So to read more about the ODE systems theory, dynamical systems theory and go through some

more links I have said, you can refer to Professors book and it is mathematical methods for

chemical engineers. I think it is Prentice-Hall India, so this book is available in the library.

So I think in his last chapter, he goes through this stability theory in some detail with a lot of

practice problems and even answers some of the questions about high order dynamics. So that is

basically I would refer for you down today. So we will now look at specific example to which we

can apply the past steps that we have just discussed and analyze the stability of a dynamical

system.
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So now I will work in x y z variables rather than subscripts. The change in x where the dot

denotes the derivative is  -xy and the change in y=-y+x square-lambda and here lambda is a

parameter, write that clearly. So look a bit carefully at these equations, you will see that for

positive values of both x and y, the change in x pulls it back towards 0 as does this term in y but

the x square term takes y further away from 0.

So there is a chance for some instability in some dynamics in the system and we will get right to

the very first step of our analysis which is to find the steady-states. So to find the steady-states,

we put the right-hand sides of both these equations to 0. So from the first equation, we can get

that say x=0, then from the second equation, I would immediately find that y=-lambda, right. So

this is my first steady-state and the other option form here is that y=0 in which case I am going to

get x square=lambda or x=+-square root of lambda.

So you see that I actually have 3 different possibilities, one is 0, -lambda and the other 2 are

--and you see another interesting thing here that these 2 steady-states are possible only if lambda

is positive because if lambda is negative, naturally both of these would be imaginary and our

vector field to begin with is real. So these exist only for lambda>0 whereas this steady-state

exists for all lambda, right.

So this is the picture that we have and clearly at lambda=0, I have a transition from one steady-



state to 3 steady-states and this is something that we should keep in mind as we go on and we

will get back to this at the end after we analyze stability. So now that we have looked at steady-

state, so we will move on to step 2.
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And that was of course linearization. So in this step, we write the variables as the steady-state

value+a perturbation of order epsilon and substituting this into our original system of dynamic

equations and linearizing, we already know that we will get equations of the following form,

right, where the Jacobian matrix contains the partial derivatives of the 2 right-hand side vector

fields.

So why do not we compute the Jacobian matrix now. So here I will have derivative of the first

function with respect to x, then moving on to the second term, right and now that we have the

Jacobian,  we want to  evaluate  the Jacobian at  the base solution which in this  case the base

solution that we want to study the stability is the one that exists for all values of lambda and that

is when x=0 and y is -lambda, right and we will store this neat result, okay.

So you might ask the question why are we picking this particular steady-state to look at? Of

course, we should study the stability of these as well but for this lecture, I am going to focus on

this for 2 reasons, firstly this is the steady-state that exists for all values of this parameter lambda

and so in some sense it is the trivial steady-state that is always a solution and in this sense which



comes to the second point, this steady-state is very similar to the kind of simple steady-states that

we find in the fluid systems that we will be studying in this course.

So for example a Rayleigh-Benard convection experiment, when the fluid is at rest without any

convection, that is the simplest possible steady-state of the system which exists for all values of

the parameter like the Rayleigh number or the amount of temperature difference of the plates and

then  after  a  certain  amount  of  heat  input,  you  get  new  steady-states  arising  which  is  the

convection cells which correspond in this analogy to these new states.

So that is why right now we are going to focus on this trivial simple steady-state which exists for

all lambda and we can see that the Jacobian at that point at 0, -lambda is simply this diagonal

matrix.  So having completed  the first  2  steps,  we now move onto the  crucial  step 3 which

involves the eigenvalues problem.
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So if you remember at this stage, we make a substitution for our variables, some constant which

is governed by its initial condition or at this point itself I can say x0 e to the power sigma t. So

we assume an exponential growth having the same growth parameter sigma for both variables

and we can make this substitution into a linearized system where the Jacobian about a base state

is lambda and -1, the diagonal matrix.



So after doing this as we know, we are going to get sigma*, after simply substituting this in this

expression, we will get sigma*the vector=the Jacobian * the vector and the classic eigenvalue

form matrix*vector gives me the eigenvalue which in this case is sigma * the vector. So directly

as we had already said, sigma is going to take the values of the eigenvalues of the matrix J, of

course evaluated at 0, -lambda at the steady-state of interest.

So in this case, sigma can take 2 values, +lambda and -1. So in a 2-dimensional system, the 2

eigenvalues or growth rates are lambda and -1. So we can see here directly that this -1 term, this

eigenvalue is only going to lead to a decay, an exponential decay of the solution. Lambda on the

other hand, can make the system unstable and lead to exponential deviation away from the base

steady-state, 0, -lambda if the values of lambda are positive.

So at  this  stage,  now we can conclude  about  the  stability  of  the  steady-state  of  interest,  0,

-lambda and say that it is stable when lambda<0 and it is unstable when lambda>0 and this is

now very interesting result because you see it fits in very well with the multiplicity of steady-

states that we had observed right at the beginning. So if you come here, you will see that for

negative  values  of  lambda,  only  1  solution  exists  because  these  2  solutions  would  become

complex.

So if lambda < 0, I have only my base steady-state and in that case, the base steady-state is

stable; however, when lambda > 0, my base steady-state becomes unstable and that is exactly

when the 2 new steady-states arise with + - square root of lambda, 0 and now these come in so to

speak to take the place of the original steady-state. So I can represent all of this in terms of a

diagram of the steady-states plotted against the parameter lambda which in the literature has been

called the bifurcation diagram.

(Refer Slide Time: 52:49)



So in the bifurcation diagram now, so on this axis, I am going to plot values of lambda and on

this axis, I am going to plot x steady-state and here lambda is 0. So on this side, lambda is

negative and here lambda is positive and if I plot the steady-states now, I will get a situation

where I have only 1 solution all the way up to lambda=0 and then exactly at this point, this

original solution which has simply x=0, becomes unstable which I have denoted by the dash line.

And instead of this, I will get the 2 new solutions which grow as the square root of lambda and

you can see that they will be symmetric because they are +- square root of lambda. This is 0 and

positive and negative. Now I will leave it up as a homework exercise to do the linear stability

analysis about these 2 steady-states which are +- square root of lambda, 0. So you can linearize

the system about these 2 steady-states, calculate the Jacobian, its eigenvalues and find whether

these are stable or unstable.

So that is the homework problem. But I can tell you now that in fact these will turn out to be

stable and this is a classic exchange of stability concept where one system, one state becomes

unstable and 2 new steady-state solutions emerge which are actually stable. So for lambda<0, the

system will be at this steady-state globally and as soon as lambda crosses 0, it is going to leave

this steady-state now which has become unstable and move to either the one above or the one

below and this bifurcation diagram is called the Pitchfork bifurcation.



And is in fact a classic, one of the classic bifurcations in 1-dimensional systems and is in fact

seen  in  high  dimensions  as  well  as  in  pattern  forming systems involving  partial  differential

equations and there is special reason for that and that is the inherent symmetry of this bifurcation

diagram and the reason for this symmetry you can trace back to the vector field which if you see

is symmetric for values of plus or minus x.

So what that means is if I substitute x=-x, I will get a - sign out from here as well us from here

which will leave the equation unchanged and you can see the same thing happens here because

of x square. So this equation also remains unchanged if I make the substitution x goes to -x and

that is the reason why along the x axis, I have this symmetry about 0. So you will find that in

physical  systems,  this  is  quite  common  where  the  inversion  symmetry  about  positive  and

negative values holds.

And that is why the Pitchfork bifurcation is quite common in many of our systems. So we will be

seeing this later on in the course again in a more complex context. But it is good to remember

this right here. So with this, we have analyzed today the key stages in a stability analysis and I

have shown it to you in ODE's but the same ideas propagate forward when we look at partial

differential equations.

And therefore very often even though we may not be able to find out these steady-states because

in this case, we have a simple vector field, so we could directly obtain the solutions analytic but

in complex partial differential equations which have many solutions, it is very difficult to find

out to solve those non-linear PDE's and get all the steady-states in the system. However, we will

usually be able to find a simple steady-state which exists for all values which in this case is this,

base steady-state, x=0. 

So we would  know this  and by doing  a  stability  analysis,  we can  find  when  this  becomes

unstable and possibly leads to new solutions and so during the next, the latter part of this course,

we will be focusing on analysing these systems and studying their pattern formation.


